Managing Aviation Projects from Concept to Completion

TRIANT G. FLOURIS

&

DENNIS LOCK

ASHGATE
Contents

List of Figures xiii
Acknowledgments xix
Foreword by William DeCota xx
Foreword by Dr Yiannis Paraschis xxv
Preface xxvii

1 The Nature of Projects and their Management 1
An introduction to project management 1
Four different types of projects 2
Project life cycles and life histories 5
Four principal players in a project life cycle 10
Project management—a matter of common sense, logical reasoning and
determination 10
Senior management support 11
References 11

2 Factors for Project Success or Failure 13
Success or failure factors in relation to the initial project definition 13
Three primary success or failure factors that are particularly relevant to the
project execution phase 15
Trade-offs between the time, cost and performance objectives 18
Perceptions of project success or failure beyond the three primary objectives 22
Identifying and ranking the stakeholders 23
Benefits realization from a large aviation project 26
Case example: Denver International Airport—a project with failure built in
from the start 28
Conclusion 29
References 29

3 Project Definition 31
Aspects of project definition for external and internal projects 31
Project definition through the project life cycle 32
Safeguards for projects which are difficult or impossible to define 34
Checklists as an aid to project definition 36
Defining projects proposed by external clients or customers 39
Defining the project scope 44
Strategic Decisions
What are strategic decisions? 51
Examples of early strategic questions and the strategic management process 52
The strategic management process 54
Questions of project definition and methodology 57
Questions of project resources 58
Questions of in-house management competence 59
SWOT analysis as a tool for considering the competition and business environment 60
Formulating project strategy under uncertainty 64
Early dealings with regulatory bodies of the aviation industry 68
References 69

Estimating the Project Costs
Introduction to cost estimating 71
Cost accounting terms commonly used in project cost estimating and cost control 73
Accuracy or reliability of cost estimates 75
Top-down or bottom-up? 77
Compiling the project task list for bottom-up estimates 78
Documenting the cost estimates 81
Estimating manufacturing costs 88
Estimating project labor costs 90
Estimates for material and equipment costs 93
Personal estimating characteristics 94
Reviewing the cost estimates 96
Version control of project cost estimates 97

Evaluating an Aviation Investment Project and Preparing a Business Case 99
Projects carried out by contractors for external customers 99
Investment projects 100
The dimension of time in project financial evaluations 101
Introduction to project financial feasibility analysis 101
Case example: An airport visitors' center building project 103
The simple payback method of project financial appraisal 107
Discounting the cash flows 111
How much confidence can we place in the data? 114
Preparing and presenting a business case 118
Project funding 119

Project Authorization 121
Purposes of a project authorization procedure 121
Project authorization as a chain reaction 122
Many variations on the authorization theme 122
Authorization criteria for multiple projects 127
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project registration and numbering</td>
<td>127</td>
</tr>
<tr>
<td>Distribution of project authorization documents</td>
<td>128</td>
</tr>
<tr>
<td>Authorizing work without a contract or customer's order</td>
<td>128</td>
</tr>
<tr>
<td>References</td>
<td>131</td>
</tr>
<tr>
<td>8 Organizing the Project</td>
<td>133</td>
</tr>
<tr>
<td>Organization charts</td>
<td>133</td>
</tr>
<tr>
<td>Introductory observations about organization in project companies</td>
<td>136</td>
</tr>
<tr>
<td>Coordinated matrix organizations</td>
<td>137</td>
</tr>
<tr>
<td>Matrix solutions for multiple projects</td>
<td>141</td>
</tr>
<tr>
<td>Project team organizations</td>
<td>142</td>
</tr>
<tr>
<td>Team or matrix: which organization is best?</td>
<td>144</td>
</tr>
<tr>
<td>Hybrid organizations</td>
<td>146</td>
</tr>
<tr>
<td>Contract matrix organizations</td>
<td>148</td>
</tr>
<tr>
<td>Joint venture projects</td>
<td>149</td>
</tr>
<tr>
<td>9 Some Key Roles and Stakeholders in the Project Organization</td>
<td>151</td>
</tr>
<tr>
<td>The role of senior management in projects</td>
<td>151</td>
</tr>
<tr>
<td>The project customer (or owner)</td>
<td>152</td>
</tr>
<tr>
<td>The financial institutions</td>
<td>153</td>
</tr>
<tr>
<td>The design engineers and managers</td>
<td>153</td>
</tr>
<tr>
<td>The project manager</td>
<td>154</td>
</tr>
<tr>
<td>Director of projects or program manager</td>
<td>157</td>
</tr>
<tr>
<td>The project engineer</td>
<td>158</td>
</tr>
<tr>
<td>Project support office</td>
<td>159</td>
</tr>
<tr>
<td>References</td>
<td>160</td>
</tr>
<tr>
<td>10 Work Breakdown and Coding</td>
<td>161</td>
</tr>
<tr>
<td>The WBS concept</td>
<td>161</td>
</tr>
<tr>
<td>WBS examples</td>
<td>162</td>
</tr>
<tr>
<td>Coding systems</td>
<td>165</td>
</tr>
<tr>
<td>Examples of coding systems</td>
<td>167</td>
</tr>
<tr>
<td>Benefits of a logical coding system</td>
<td>172</td>
</tr>
<tr>
<td>Choosing a coding system</td>
<td>175</td>
</tr>
<tr>
<td>What happens when the customer says 'You shall use my coding system!'?</td>
<td>176</td>
</tr>
<tr>
<td>References</td>
<td>177</td>
</tr>
<tr>
<td>11 Relating the Project Dimensions of Work, Organization and Cost</td>
<td>179</td>
</tr>
<tr>
<td>Dimensions of a typical aviation project</td>
<td>179</td>
</tr>
<tr>
<td>Managing the incomprehensible and creating order out of chaos</td>
<td>180</td>
</tr>
<tr>
<td>Introducing the project OBS</td>
<td>182</td>
</tr>
<tr>
<td>A project case example</td>
<td>183</td>
</tr>
<tr>
<td>Relationship between the project WBS and OBS</td>
<td>186</td>
</tr>
<tr>
<td>Introducing the CBS</td>
<td>188</td>
</tr>
<tr>
<td>Case example: cash crisis at Jet-U-There</td>
<td>189</td>
</tr>
<tr>
<td>12 Introduction to Detailed Project Planning</td>
<td>201</td>
</tr>
<tr>
<td>A demonstration case example</td>
<td>202</td>
</tr>
</tbody>
</table>
Planning the 4J airstrip project by the diary method • 204
A simple remedy for the 4J airstrip project 206
Limitations of Gantt charts < 209

13 An Introduction to Critical Path Network Analysis 211
A general introduction to critical path project planning 211
Activity-on-arrow network diagrams 215
The 4J airstrip project planned using an arrow network diagram 220
Activity-on-node (precedence) network diagrams 223
The 4J airstrip project planned using a precedence diagram 227
Dummy activities in precedence networks 232
References 233

14 Critical Path Network Analysis in More Practical Detail 235
Making a detailed plan for a new project 235
Level of detail in the project schedule 238
Estimating task durations 241
Rolling wave planning 242
Use of PERT to resolve uncertainty in estimated task durations 243
Hangar restoration project: A case example planned using PERT 244
What if the predicted timescale is too long? 246
Time/cost optimization through crashing 247
Fast-tracking to accelerate project delivery without adding cost 248
Extreme measures 250
References 250

15 Principles of Resource Scheduling 251
The nature of project resources 252
Resource scheduling without a computer 254
A Gantt chart resource scheduling case example 255
Time-limited and resource-limited schedules 261
The significance of float in resource scheduling 262

16 More Advanced Aspects of Resource Scheduling 267
Choosing which resources to schedule 267
Specifying resource availability levels 270
Specifying cost rates for labor and materials 271
Allocating resource quantities to tasks 272
Scheduling more complex tasks 273
Using different calendars 274
Multi-project scheduling 276
Administration of the multi-project model 278
Project resource scheduling in the corporate context 281
What-if testing using a multi-project model 281
Choice of software 282
Case example: The Lox Brothers light aircraft development project 282
22 Managing Progress

Progress management as a closed loop control system 375
Progress management styles 377
Updating drawing and purchase schedules and records 380
Updating the project network diagram and work schedules 380
Collecting progress information 382
Statistical checks 384
Managing the progress and quality of bought-in materials and equipment 385
Managing sub-contractors and agency employees 385
Routine priority allocation in manufacturing projects 388
When the news is bad 389
Corrective measures 390
Meetings 394
Progress reports 399
References 400

23 Managing Changes

Special reasons for managing changes in aviation projects 401
The impact of changes in relation to the project life cycle 402
Origin and classification of changes 402
Authorization arrangements 405
General administration of project changes 408
Forms and procedures 411
Version control for modified drawings and specifications 418
Emergency modifications 419

24 Managing Project Costs

Establishing and maintaining project cost budgets 423
Principles of cost control 425
Controlling direct costs 426
Controlling fixed costs and overhead cost recovery 427
Additional cost control factors 428
The total cost approach 429
A checklist of cost management factors 431
Transactions in foreign currencies 432
Cost collection methods 432
Audits and fraud prevention measures 437
Conclusion 438

25 Managing Project Cash Flows

Understanding cash flows 439
Cash flows for internally funded projects 440
Methods for scheduling cash flows 442
Case example: scheduling cash flows for the Loxylene aviation fuel project 444
26 Reporting Progress and Costs

Milestone analysis
Earned value analysis
Case example: Using earned value analysis on a project to renew perimeter fencing at an airport
Effect of project changes on earned value analysis
Predicting and reporting profitability for a whole project
Post-mortem
Case example: ATM project

27 Project Closedown

Reasons for closing a project
Formal project closure
Authorizing post-project expenditure
Final project cost records
Disposal of surplus materials
Final project as-built definition: the end of a continuous process
As-built records of ground-based projects
As-built condition of a project that is interrupted before completion
Additional as-built record requirements for flight-based projects
Traceability

Bibliography
Index