HANDBOOK OF TRANSPORT MODELLING

SECOND EDITION

Edited by

DAVID A. HENSHER

Institute of Transport Studies, University of Sydney

KENNETH J. BUTTON

The School of Public Policy, George Mason University

United Kingdom – North America – Japan – India – Malaysia – China

CONTENTS

Chapter 7		
Introduction		
DAVID A. HENSHER and K	ENNETH J. BUTTON	1
1. A new edition		1
2. The concept		2
3. Transport modelling	7	3
4. A good model		4
5. The changing policy	agenda	6
Chapter 2		
History of Demand Model	lling	
JOHN BATES		11
1. Introduction		11
2. Supply and demand		12
3. Aspects of demand		14
4. The four-stage mod	el	17
4.1. Assignment		18
4.2. Concluding rema		20
5. Models of trip prod	uction	21
5.1. Car ownership		24
5.2. Models of trip at		26
	on or destination choice	26
6.1. Forecasting the		29
7. Models of mode cho		30
8. Overall model struc	ture	32
References		33
Chapter 3		
The Four-Step Model		

MICHAEL G. MCNALLY		35
1.	Introduction	35
2.	Transportation systems analysis	36
3.	Problems, study areas, models, and data	38
	3.1. Study area definition	38
	3.2. Models	39
	3.3. Data	40
	3.4. A sample problem	40

4.	Trip generation	42
	4.1. Process	42
	4.2. A sample household trip production model	44
	4.3. A sample zonal attraction model	45
	4.4. Application to the base population	45
	4.5. Time of day	46
5.	Trip distribution	46
	5.1. Process	46
	5.2. Travel impedance and skim trees	47
	5.3. A sample gravity model	48
	5.4. Adjustments	48
6.	Mode choice	50
7.	Route choice	50
	7.1. Process	51
	7.2. A sample assignment of vehicle trip tables to	
	the highway network	51
8.	Summary	52
	References	52

Chapter	4
---------	---

 Introduction The trip-based approach 2.1. The four-step model 2.2. Limitations The activity-based approach 	55
 The trip-based approach The four-step model Limitations 	55
2.1. The four-step model2.2. Limitations	56
	56
3. The activity-based approach	57
	58
3.1. Characteristics of the activity-based approach	60
3.2. Theory and conceptual frameworks	61
3.3. Adaptation in activity behavior	62
4. Data	63
5. Applications of activity-based approaches	64
5.1. Simulation-based applications	64
5.2. Computational process models	66
5.3. Econometric-based applications	67
5.4. Mathematical programming approaches	68
5.5. TRANSIMS	68
6. Summary and future directions	69
6.1. Current modeling needs	69
6.2. Data needs	70
6.3. Policy applications	70
6.4. Where we are and where we are going	71
References	72

Chapter 5

Flexil	ble Model Structures for Discrete Choice Analysis	
	NDRA R. BHAT, NAVEEN ELURU and RACHEL B. COPPERMAN	75
1.	Introduction	75
2.	The heteroscedastic class of models	77
	2.1. HEV model structure	78
	2.2. HEV model estimation	80
3.	The mixed multinomial logit (MMNL) class of models	81
	3.1. Error-components structure	82
	3.2. Random-coefficients structure	' 83
	3.3. Probability expressions and general comments	85
4.	The mixed GEV class of models	86
5.	Simulation estimation techniques	88
	5.1. The Monte-Carlo method	88
	5.2. The quasi-Monte Carlo method	89
	5.3. The hybrid method	91
	5.4. Summary on simulation estimation of mixed models	91
6.	Conclusions and application of advanced models	92
	References	101

Dura	tion	Modeling	
CHA	NDRA	A R. BHAT and ABDUL RAWOOF PINJARI	105
1.	Intr	oduction	105
2.	The	hazard function and its distribution	107
	2.1.	Parametric hazard	108
	2.2.	Non-parametric hazard	110
3.	Effe	ect of external co-variates	111
	3.1.	The proportional hazard form	111
	3.2.	The accelerated form	113
		3.2.1. The accelerated lifetime effect	113
		3.2.2. The accelerated hazard effect	114
	3.3.	General forms	115
4.	Unc	observed heterogeneity	116
5.	Mo	del estimation	117
	5.1.	Parametric hazard distribution	118
	5.2.	Non-parametric hazard distribution	119
6.	Mis	cellaneous other topics	122
	6.1.	Left censoring	122
	6.2.	Time-varying covariates	122
	6.3.	Multiple spells	123
	6.4.	Multiple duration processes	123
	6.5.	Simultaneous duration processes	124

х		Contents
1.	Conclusions and transport applications	125
	References	130
Chapte	er 7	
Long	titudinal Methods	
RYUI	ICHI KITAMURA	133
1.	Introduction	133
2.	Panel surveys as a means of collecting longitudinal	
	data	133
3.	Cross-sectional vs. longitudinal analyses	134
4.	Travel behavior dynamics	136
5.	Stochastic processes	138
	5.1. Renewal processes	138
	5.2. Markov renewal processes	139
	5.3. Markov processes	139
_	5.4. Markov chains	140
6.		141
	6.1. Linear models	142
	6.2. Distributed-lag models	143 144
	6.3. Lagged dependent variables 6.4. Non-linear models	144
	6.5. Dynamic models	144
	6.6. Initial conditions	146
	6.7. State dependence vs. heterogeneity	147
7.		148
8.	Conclusions	149
	References	149

State	d Pre	ference Experimental Design Strategies	
JOHN	M. F	COSE and MICHIEL C.J. BLIEMER	151
1.	Intr	oduction	151
2.	Exp	erimental design considerations	153
	2.1.	Model specification	154
	2.2.	Experimental design generation	155
	2.3.	Questionnaire construction	156
3.	Stat	ed choice design procedures	157
	3.1.	Optimal orthogonal choice designs: Street and Burgess (2004) and	
		Street et al. (2001,2005)	158
	3.2.	Efficient choice designs: Huber and Zwerina (1996) and	
		Sandor and Wedel (2001, 2002, 2005)	163

	3.3. Choice percentage designs: Tonner et al. (1999) and	
	Kanninen (2002)	170
	3.4. Testing for prior parameter misspecification in EC and	l
	CP designs	171
4.	Choosing a design method	171
5.	Sample size and stated choice designs	173
6.	Case study	174
7.	Conclusion	177
	References	178
	Appendix 1: Coefficients of orthogonal polynomials	180

Chapter 9

Towards a Land-Use and Transport Interaction Fra	amework
FRANCISCO J. MARTINEZ	181
1. Introduction	181
2. Model structure	183
3. The land-use model	186
3.1. The bid-choice location framework	186
3.2. The stochastic location model	189
3.3. The land-use model	190
4. Measuring access	192
4.1. Application example	194
5. Transport impacts on land-use	197
6. Lessons for economic appraisal	198
7. Concluding remarks	199
References	200

Chapter 10

	vel Networks 5 G. WILLUMSEN	203
1.	Introduction	203
	1.1. Flows and capacity	205
2.	Notation	206
3.	Assignment methods	207
	3.1. Route choice	208
	3.2. Steps in traffic assignment	209
	3.3. Tree building	210
	3.4. All or nothing assignment	210
	3.5. Stochastic methods	211
	3.6. Simulation-based methods	212

xi

Contents

2	4. Congested assignment	213
	4.1. Wardrop's equilibrium	213
	4.2. A mathematical programming approach	214
	4.3. Solution methods	216
4	5. Limitations of classic methods	217
6	6. Generalised networks	218
	6.1. Common passenger services	219
	6.2. Freight	219
	References	219

Analytical Dynamic Traffic Assignment Models	
TERRY L. FRIESZ, CHANGHYUN K.WON and DAVID BERNSTEIN	221
1. Introduction	221
2. What is dynamic traffic assignment?	222
3. Dynamic network loading and dynamic traffic assignment	223
3.1. Notation	223
4. Dynamics based on arc exit-flow functions	223
5. Dynamics with controlled entrance and exit flows	225
6. Cell transmission dynamics	227
7. Dynamics based on arc exit-time functions	228
8. Dynamic user equilibrium	231
9. Tatonnement and projective dynamics	233
10. A numerical method for DUE problems	234
11. A heuristic treatment of state-dependent time shifts in	
DTA problems	235
References	236

Chapter 12

Transport Demand Elasticities

ТАЕ	HOON OUM, W.G. WATERS II and	
XIAOWEN FU		239
1.	Concepts and interpretation of demand elasticities	239
	1.1. Ordinary and compensated elasticities	239
	1.2. Other elasticity concepts	240
	1.3. Mode choice elasticities	245
	1.4. Disaggregate discrete choice models	246
	1.5. Linkages between concepts of elasticities	247
2.	Estimates of price elasticities	247

3. 5	Some guidelines and pitfalls in estimating transport	
(demand elasticities	250
3	3.1. The importance of market-specific demand studies	250
3	3.2. Types of transport demand elasticity studies	250
3	3.3. Specification of demand functions: functional form	251
3	3.4. Specification of demand functions: omitted variables	252
3	3.5. Specification of demand functions: static and dynamic models	252
3	3.6. Interpretation of elasticities	253
4. (Concluding remarks	254
]	References	254
Chapter	13	
Closed	Form Discrete Choice Models	
FRANF	K S. KOPPELMAN	257
1. 1	Introduction	257
2	Multinomial logit model	258
	2.1. Independence of errors across alternatives	259
2	2.2. Equality of error variance across cases	260
3.	Relaxation of the independence of errors across alternatives	260
	3.1. The nested logit model	261
	3.2. Generalized extreme value models	262
	3.3. Two-level GEV models	263
ŝ	3.4. Multi-level GEV models	269
	3.5. Reverse logit and GEV models	270
	3.6. Overview of models that relax the independence of errors over	
	alternatives	271
4.	Closed form discrete choice models: extensions and limitations	272
4	4.1. Relaxation of the equality of error structures over cases	272
4	4.2. Revealed and stated preference models	274
	4.3. Limitations of closed form models	274
5.]	Future development in closed form choice models	275
	Acknowledgements	275
]	References	275
Chapter	14	
Survey	and Sampling Strategies	
PETER	R. STOPHER	279
1.	Introduction	279
2.	Survey methods	281
	2.1. Household travel surveys	282
	2.2. Other non-household-based surveys	287
	2.2.1. Traffic-counting surveys	287

4.4.1.	Trainc-counting surveys	207
2.2.2.	Network inventory	288
2.2.3.	Land-use inventory	288
2.2.4.	On-board surveys	288
	2.2.2. 2.2.3.	2.2.1. Frame-counting surveys 2.2.2. Network inventory 2.2.3. Land-use inventory 2.2.4. On-board surveys

Contents

		2.2.5. Roadside interviews	289
		2.2.6. Commercial vehicle surveys	289 290
		2.2.7. Workplace surveys	290 290
2	G	2.2.8. Intercept surveys	=> •
3.		oling strategies	291
	3.1.	Sampling frames	291
	3.2.	Error and bias	292
	3.3.	Sampling methods	293
		3.3.1. Simple random sampling	294
		3.3.2. Stratified sampling with uniform sampling fraction	294
		(proportionate sampling)	294
		3.3.3. Stratified sampling with variable sampling fraction	294
		(disproportionate sampling or optimal sampling)	295
		3.3.4. Cluster sampling	296
		3.3.5. Systematic sampling	296
		3.3.6.Choice-based sampling3.3.7.Multistage sampling	297
		3.3.8. Overlapping samples	298
4	The	future	299
4.			301
	Refe	erences	302
Chapte	er 15		
Geog	ranh	c Information Systems for Transport (GIS-T)	
		J. DUEKER and ZHONG-REN PENG	303
1.	Intro	oduction	303
2	GIS	basics	304
	010	Definition of GIS	304
	2.2.	Four key functions of GIS	305
	2.2.	2.2.1. GIS digital mapping	305
		2.2.2. GIS data management	305
		2.2.2. GIS data management 2.2.3. GIS data analysis	306
		2.2.4. GIS data presentation	306
	2.3.	Special requirements of GIS for transport applications	307
3.		ramework for GIS-T	308
3. 4		r illustrative examples of GIS-T	500
4.		1	311
	4.1.	Evolution of GIS to support comprehensive	
		urban land use/transportation planning	312
	4.2.	The development of digital road map databases for	
		vehicle navigation	315
		4.2.1. Cartography and spatial accuracy issues	316
		4.2.2. Completeness and currency issues	310
		4.2.3. Interoperability issues	317
	4.3.	s s s s s s s s s s s s s s s s s s s	318
		4.3.1. Data source and data preprocessing	318
		4.3.2. Measuring path deviation and consistency	319
		4.3.3. Comparing actual path and shortest path 4.3.4. Summary	319
		4.3.4. Summary	321

	4.4. Dev	4.4. Development of spatial-temporal GIS model for transit trip planning systems 321		
	trip			
	4.4.1	. Object-oriented spatiotemporal data model to represent		
		transit networks	324	
	4.4.2	. A Comparison between the object model and the ER model	325	
5.	Conclusi	on	327	
	Reference	es	327	

Chapter 16

Definition of Movement and Activity for	Transport Modelling
KAY WERNER AXHAUSEN	329
1. Introduction	329
2. Types of data	330
3. Defining movement and activity	331
4. Typical terms and problems of agg	gregation 335
5. Defining the survey object	337
6. Translating the definitions into sur	rveys 339
7. Freight and commercial traffic	341
8. Summary	342
References	342

Chapte	er 17		
Time	Perio	od Choice Modelling	
JOHN	ВАТ	TES	345
1.	1. Introduction		
2.	Und	lerlying principles of time of travel choice	346
	2.1.	Notation	346
	2.2.	The utility approach to the choice of time of travel	347
	2.3.	Empirical estimation of the schedule utility function	348
		2.3.1. Conclusions on the estimation of schedule disutility	351
	2.4.	Implementing the demand function within an	
		equilibrium context	352
3.	Prac	ctical modelling of time period choice	354
	3.1.	"Micro" time of day choice	354
	3.2.	"Macro" time period choice	358
	Ref	erences	361

Chapter 18

Allocation and Valuation of Travel-Time Savings	
SERGIO R. JARA-DIAZ	363
1. Introduction	363
2. Time allocation theory and the subjective value of time	364

xv

Contents

3.	Discrete travel choice and the value of time	369
4.	Towards social values	373
5.	Conclusion	375
	Appendix: Derivation of the SVTT from the U(G, L,W,t) model	377
	Glossary	378
	References	379

Cost	Functions in Transport	
ERIC	PELS and PIET RIETVELD	381
1.	Introduction	381
2.	Estimation of cost functions	384
	2.1. Accounting cost functions	384
	2.2. Statistical estimation of cost functions	385
	2.3. Returns to scale	388
	2.4. Productivity and technological change	389
	2.5. Extensions	390
3.	Applications	391
4.	Conclusion	393
	References	393

Chapter 20

Produ	uctivity Measurement	
W.G.	WATERS II	395
1.	Introduction	395
2.	Concepts of productivity gains	396
3.	Index number procedures for productivity measurement	398
	3.1. Partial factor productivity (PFP) and performance ratios	398
	3.2. Data envelopment analysis	399
	3.3. Total factor productivity (TFP) index	401
	3.3.1. Measuring inputs and outputs	401
	3.3.2. index number formulas	404
	3.3.3. Multilateral TFP index procedure	405
	3.4. Decomposition of TFP into sources	406
	3.4.1. Formal decomposition of TFP	407
	3.4.2. Use of regression analysis to decompose a TFP index	407
4.	Conventional econometric methods	408
5.	Concluding remarks	411
	5.1. Productivity and financial performance	412
	5.2. Productivity and quality change	412
	5.3. Multi-dimensional performance measures	413
	5.4. Conclusion	413
	References	413

xvi

Chapt	er 21		
Cong	gestior	n Modelling	
-	-	DSEY and ERIK VERHOEF	417
1	Intro	oduction	417
2.		e-independent models	418
<u> </u>		e-dependent models	422
4.		elling congestion on a network	431
5.		d pricing and investment	434
<i>6</i> .		clusions	437
0.		nowledgement	438
		erences	438
	Kelt	hences	430
Chapt	er 22		
-		Signalized and Unsignalized Junctions	
		JTBECK	443
1.	Intro	oduction	443
1. 2.			443
2. 3.	1 5 5		444
5.	3.1 .	Stream rankings	444
	3.2.	Availability of opportunities	444
	3.3.	The order of opportunities	445
	3.4.	The usefulness of opportunities to the entering	
	0.11	drivers	446
	3.5.	The relative priority of traffic at the junction	447
	3.6.	The capacity of simple merges with absolute priority	447
	3.7.	The capacity of a limited priority merge and a	
		roundabout entry	448
	3.8.	The estimation of delays at simple merges with	
		absolute priority	449
	3.9.	Estimation of delay using M/M/l queuing theory	450
	3.10.	Delays under oversaturated conditions	451
		Queue lengths at simple merges	452
		Analysis of junctions with a number of streams	453
		Queuing across a median	454
		Accounting for priority reversal	454
4.		alized junctions	454
		Effective red and green periods	454
	4.2.	The definition of delays at a signalized	
		junction	455
		Delay models for undersaturated conditions	456

4.4.	Time dependent delay estimates	457
4.5.	Modeling of turns through oncoming traffic at	
	signalized junctions	458
Ref	rences	459

Chapter 23

	Timing (S. MAHMASSANI	461
1.	Introduction	461
2.	Trip timing for the work commute under equilibrium	
	conditions	463
3.	Prediction of within-day equilibrium departure patterns	465
4.	Day-to-day dynamics	466
	4.1. Daily variability of trip timing decisions of commuters in	
	actual systems	467
	4.2. Behavioural mechanisms and decision process models	469
	4.3. Day-to-day forecasting frameworks	471
5.	Concluding comments	472
	References	473
Chapte	er 24	
Mode	elling Parking	
	IAM YOUNG	475
1.	Hierarchy of models	475
2.	Model types	473
۷.	2.1. Parking design models	
	2.1. Parking design models 2.2. Parking allocation models	478 480
	2.3. Parking search models	480
	2.4. Parking choice models	483
	2.5. Parking interaction models	485
3.	0	485
5.	References	486
		.00

		Iodels DALY and PATTARATHEP SILLAPARCHARN	489
1.	Intro	oduction	489
2.	Euro	opean national models 1975-1998	491
	2.1.	The RHTM and subsequent developments in the UK	491
	2.2.	The Netherlands national model	492
	2.3.	Norwegian national model	494
	2.4.	Italian decision support system (SISD)	495
	2.5.	Other continental European models	496
3.	Rec	ent developments	496
	3.1.	Revisions of Netherlands and Norwegian models	497
	3.2.	Swedish National models: SAMPERS and	
		SAMGODS	497
	3.3.	British national model (NTM)	498

Contents		xiz	
	3.4. National model of Thailand	499	
	3.5. Other countries	500	
4.	Discussion	500	
	Acknowledgements	501	
	References	501	

An In	trodu	ction to the Valuation of Travel Time-Savings and Losses	
HUGI	H F. G	UNN	503
1.	Intro	oduction	503
2.	Con	ceptual models of time-cost trading	505
	2.1.	A simple behavioural model	505
	2.2.	More elaborate models of rational behaviour	506
3.	Exp	erimental data: situations and evidence of preference	508
	3.1.	Situations	508
	3.2.	Indications of relative attractiveness	509
4.	The	history of VTTS measurement	510
	4.1.	Probabilistic choice models	510
	4.2.	Regression approaches with transfer-price data	511
	4.3.	Forecasting and evaluation	511
5.	Cur	rent findings	512
	5.1.	Personal travel	512
	5.2.	Business travel and freight	513
6.	Rec	ent results and conclusions	514
	Ref	erences	517
Chapte	er 27		
Can 7	Гelec	ommunications Help Solve Transportation Problems?	
A De	cade	Later: Are the Prospects any Better?	
		DMON and PATRICIA L. MOKHTARIAN	519

LAN	SALOMON and PATRICIA L. MOKHTARIAN	519
1.	A twenty-first century perspective	519
2.	Do ICTs affect the demand for travel? A typology	
	of interactions	521
3.	An overview of ICT technologies and applications	522
4.	Modeling approaches	527
5.	State of knowledge	531
6.	Do we need a new research paradigm?	532
	6.1. Challenges in analyzing the impacts of ICTs on transportation	533
	6.2. Common pitfalls in the analysis of technology impacts on	
	behavior	534
7.	Policy implications and conclusions	536
	References	537

Autor	nobile Demand and Type Choice	
	D S. BUNCH and BELINDA CHEN	541
1.	Introduction	541
2.	Determinants of automobile demand	542
3.	Auto-ownership models	544
4.	Vehicle-purchase models	546
	4.1. Three MNL new car purchase models	547
	4.2. Nested MNLs of vehicle purchase	549
	4.3. Mixed MNL and revealed preference/stated preference joint	
	estimation	550
5.	Vehicle-holdings and usage models	551
	5.1. Discrete-continuous NMNLs (Theoretical backround)	551
	5.2. Discrete-continuous NMNLs (Examples from the literature)	552
	5.3. Discrete-continuous models with multiple discreteness	553
6.	Vehicle-transaction models	554
7.	Conclusions	555
	References	556

Chapter 29

	- U	Response to Information Systems and Other Transport System Innovations	
	0	NSALL	559
1.	Intr	oduction	559
	1.1.	Dimensions of response	560
2.	The	impact of ITS on travellers' knowledge of the transport system	561
	2.1.	Modelling the absence of information	561
	2.2.	Modelling the acquisition of information	564
		2.2.1. Models of "natural" learning	564
		2.2.2. Modelling of the acquisition of ITS information	565
		2.2.3. Modelling the effect of new information sources on behaviour	566
	2.3.	To equilibrate or not to equilibrate?	568
	2.4.	Credibility and compliance	569
3.	Sou	ces of data for modelling the impacts of ITS	571
	Refe	erences	572

Frequency-Based Transit-Assignment Models		
JOAQUIN DE CEA and ENRIQUE FERNANDEZ		
1. Introduction	575	
2. A brief review	576	
3. Basic concepts: transit itinerary, transit route and		
transit strategy (hyperpath)	578	

Conte	nts	xxi
4.	Formulations for the transit-assignment problem	581
	4.1. Transit-assignment models without congestion	581
	4.2. Transit-assignment models with congestion	582
5.	Some final comments	586
	References	588
Chapt	er 31	
	els for Public Transport Demand and Benefit Assessments L JANSSON, HARALD LANG,	
	AN MATTSSON and REZA MORTAZAVI	591
1.	Introduction	591
2.	A general framework on choice of mode and benefit estimation	592
2.	2.1. What factors affect choice of operators?	592
	2.2. Basic modelling of utility and demand	592
3.	Basic characteristics of elasticity models	594
4.	Basic characteristics of assignment models	595
	4.1. Introduction	595
	4.2. The RDT-model: variation with respect to ideal departure	
	or arrival time	596
5.	Basic characteristics of the multinomial logit model	599
6.	Tasks and problems of the models	602
7.	Comparisons between models by use of examples	603
	7.1. Assumptions	603
	7.2. Example 1	604
	7.2.1. Situation 1	605
	7.2.2. Situation 2	606
	7.2.3. Situation 3 7.3. Example 2	606 607
	7.3.1. Situation la	607
	7.3.2. Situation lb	608
	7.3.3. Situation le	609
	7.4. Conclusions of comparisons	609
8.	Conclusions	609
	References	610
Chap	ter 32	
	regic Freight Network Planning Models and Dynamic Oligopolistic	
	an Freight Networks RY L. FRIESZ and CHANGHYUN KWON	611
IĽK	NT L. FRIESZ AHU CHAINGHYUIN KWUIN	011

ERF	RY L. FRIESZ and CHANGHYUN KWON	611
1.	Introduction	611
2.	Some background	612
3.	The key commercial models	613
4.	Typology of models	615
5.	Shipper-carrier simultaneity	617

Co	nte	nts
CO	nic	nus

6. Integrating static CGE and network models	618
7. Non-monotonic models	619
8. Backhauling and fleet constraints	619
9. Imperfect competition	620
10. Validation	620
11. Revenue management	621
12. Dynamic extensions	621
13. Illustrative numerical example	624
References	628
Appendix: Notation	630
Chapter 33	
Urban Freight Movement Modeling	
GLEN D'ESTE	633

1.	Introduction	633
2.	The nature of urban freight	634
	2.1. Partitioning the urban freight market	635
	2.2. Measuring urban freight movements	638
3.	Modeling framework	639
4.	Steps in the modeling process	640
	4.1. Partitioning	640
	4.2. Zoning systems	640
	4.3. Networks	641
	4.4. Trip generation	641
	4.5. Trip distribution	643
	4.6. Mode split	643
	4.7. Trip assignment	643
5.	Other modeling issues	645
	5.1. Data availability	645
	5.2. Temporal variation	645
	5.3. Transient attractors	646
	5.4. Pace of change	646
	5.5. Microsimulation	647
6.	Concluding remarks	647
	References	647

Value	e of Freight Travel-Time Savings	
GERARD DE JONG		
1.	Introduction	649
2.	Classification of the methods used in freight VTTS research	650
3.	Summary of outcomes for road transport	653

Conten	its	xxiii
4.	Summary of outcomes for other modes	655
5.	A worked-out example: the second national dutch VTTS study	656
	5.1. Recruitment and segmentation	657
	5.2. The questionnaire	657
	5.3. Model estimation	658
	5.4. Outcomes	659
6.	Value of freight travel time savings in the long run	660
7.	Conclusion: state-of-practice vs. state-of-the-art	661
	References	662

Μ	ode	lling	Performance: Rail	
CI	IRI	S NAS	H and ANDREW SMITH	665
	1.	Intro	duction	665
	2.	Char	acteristics of railways	666
		2.1.	Multiplicity of outputs	666
		2.2.	Complexity of the production process	668
		2.3.	Operating environment and government intervention	669
	3.	Early	approaches to productivity measurement	669
		3.1.	Index number approaches: partial productivity measures	670
		3.2.	Index number approaches: total factor productivity measures	672
		3.3.	Econometric approaches: total factor productivity measures	673
	4.	Effic	iency-based approaches to performance measurement	675
		4.1.	Index number methods: data envelopment analysis	676
		4.2.	Econometric methods: corrected ordinary least squares (COLS)	
			and stochastic frontier analysis	678
		4.3.	A note on panel data applications	682
	5.	Rail	performance and vertical separation	684
		5.1.	The effects of european rail reforms since the mid-1990s	684
		5.2.	Separate analysis of rail infrastructure and train operations	687
	6.	Conc	clusions	688
		Refe	rences	690

The l	Perfo	rmance of Bus-Transit Operators	
BRUI	BRUNO DE BORGER and KRISTIAAN KERSTENS		
1.	Intro	oduction	693
2.	Perf	formance measurement in bus transit	694
	2.1.	Performance concepts: productivity, efficiency, and effectiveness	694
	2.2.	Specification of inputs and outputs for performance measurement	
		in the bus industry	696

Performance of bus operators			700
3.1.	Bus te	echnology and performance: some facts	700
	3.1.1.	Production technology, returns to scale, and economies of scope	700
	3.1.2.	Efficiency and productivity: general trends	702
3.2.	Deter	minants of bus transit productivity and efficiency	703
	3.2.1.	Ownership	704
	3.2.2.	Network characteristics and environmental variables	705
	3.2.3.	Subsidies and contractual arrangements	706
	3.2.4.	Regulation and competition policy	707
Con	clusion	1	711
Ref	erence	s	712
	3.1. 3.2. Con	 3.1. Bus to 3.1.1. 3.1.2. 3.2. Deter 3.2.1. 3.2.2. 3.2.3. 3.2.4. Conclusion 	 3.1. Bus technology and performance: some facts 3.1.1. Production technology, returns to scale, and economies of scope 3.1.2. Efficiency and productivity: general trends 3.2. Determinants of bus transit productivity and efficiency 3.2.1. Ownership 3.2.2. Network characteristics and environmental variables 3.2.3. Subsidies and contractual arrangements

Mode	els of Airport Performance	
PETE	RFORSYTH	715
1.	Introduction	715
2.	Modeling demand, congestion cost, and pricing	716
	2.1. Congestion models	716
	2.2. Congestion-cost models	717
	2.3. Congestion pricing models	717
3.	Models of cost and efficiency	719
	3.1. Problems in modelling performance	720
	3.1.1. Airport uniqueness	720
	3.1.2. Indivisibilities	721
	3.1.3. Design and operational factors	721
	3.1.4. Mix of services provided	721
	3.1.5. Airports as providers of intermediate services	722
	3.2. Benchmarking studies	722
	3.3. Total factor productivity measures	723
	3.4. Data envelopment analysis	724
	3.5. Stochastic frontier analysis	725
4.	Other airport models	725
	4.1. Modelling airport and airline choice	725
	4.2. Airport applications of computable general	
	equilibrium modelling	726
5.	Conclusions	726
	References	727

729
729
729

2.1. Total factor productivity	730
2.2. Unit cost analysis	730
A case study	733
3.1. Outputs	733
3.2. Inputs	735
3.3. Unit cost	735
3.4. Characteristics of the sample airlines	736
Empirical results and discussion	736
Summary and concluding remarks	740
References	741
	 2.2. Unit cost analysis A case study 3.1. Outputs 3.2. Inputs 3.3. Unit cost 3.4. Characteristics of the sample airlines Empirical results and discussion Summary and concluding remarks

Chapter 39

High	Highway Performance		
PAUI	CROUSE and MARTIN PUTTERILL		
1.	Background	743	
2.	Highway maintenance cost management framework		
3.	Highway management performance framework		
4.	Methods of analysis	749	
	4.1. Application 1 – life cycle cost management	749	
	4.2. Application 2 – scale and efficiency effects from amalgamation	752	
	4.3. Application 3 – environmental factors as cost drivers	754	
5.	Communicating service performance	758	
	References	759	

Chapter 40

Structure and Operations in the Liner Shipping Industry H.E. HARALAMBIDES		761
1.	Introduction	761
2.	Optimization of liner shipping operations	764
3.	Market structure modeling	765
4.	New theoretical perspectives on liner shipping	770
	4.1. The theory of contestability	770
	4.2. The theory of the core	771
5.	Concluding remarks	773
	References	774
Auth	or Index	777

785

xxv