Modeling Aggregate Behavior and Fluctuations in Economics

Stochastic Views of Interacting Agents

MASANAO AOKI University of California, Los Angeles

> CAMBRIDGE UNIVERSITY PRESS

CONTENTS

Preface

1	Overviews	1
	1.1 Our Objectives and Approaches	1
	1.2 Partial List of Applications	2
	"1.3 States: Vectors of Fractions of Types and Partition Vectors	3
	1.3.1 Vectors of Fractions	4
	1.3.2 Partition Vectors	5
	1.4 Jump Markov Processes	• 6
	1.5 The Master Equation	7
	1.6 Decomposable Random Combinatorial Structures	8
	1.7 Sizes and Limit Behavior of Large Fractions	8
2	Setting Up Dynamic Models	9
	2.1 Two Kinds of State Vectors	10
	2.2 Empirical Distributions	11
	2.3 Exchangeable Random Sequences	12
	2.4 Partition Exchangeability	13
	2.5 Transition Rates	16
	2.6 Detailed-Balance Conditions and Stationary Distributions	17
3	The Master Equation	19
	3.1 Continuous-Time Dynamics	19
	3.2 Power-Series Expansion	23
	3.3 Aggregate Dynamics and Fokker-Planck Equation	25
	3.4 Discrete-Time Dynamics	25
4	Introductory Simple and Simplified Models	27
	4.1 A Two-Sector Model of Fluctuations	27

xiii

	4.2 Closed Binary Choice Models •	30
	4.2.1 A Polya Distribution Model	31
	4.3 Open Binary Models	32
	4.3.1 Examples ,	35
	4.4 Two Logistic Process Models	35
	4.4.1 Model 1: The Aggregate Dynamics and Associated	
	Fluctuations	35
	4.4.2 Model 2: Nonlinear Exit Rate	37
	4.4.3 A Nonstationary Polya Model	38
	4.5 An Example: A Deterministic Analysis of Nonlinear Effects	
	May Mislead!	40
5	Aggregate Dynamics and Fluctuations of Simple Models	41
	5.1 Dynamics of Binary Choice Models	41
	5.2 Dynamics for the Aggregate Variable	43
	5.3 Potentials	45
	5.4 Critical Points and Hazard Function	47
	5.5 Multiplicity-An Aspect of Random Combinatorial	
	Features	49
6	Evaluating Alternatives	52
	6.1 Representation of Relative Merits of Alternatives	53
	6.2 Value Functions	54
	6.3 Extreme Distributions and Gibbs Distributions	57
	6.3.1 Type I: Extreme Distribution	58
	6.4 Approximate Evaluations of Value Functions with a Large	
	Number of Alternatives	60
	6.5 Case of Small Entry and Exit Probabilities: An Example	60
	6.6 Approximate Evaluation of Sums of a Large Number	
	of Terms	61
	6.7 Approximations of Error Functions	62
	6.7.1 Generalization	64
	6.7.2 Example	65
7		66
	7.1 Example: Open Models with Two Types of Agents	66
	7.1.1 Equilibrium Distribution	67
	7.1.2 Probability-Generating-Function Method	67
	7.1.3 Cumulant Generating Functions	68
	7.2 Example: A Birth-Death-with-Immigration Process	69
	7.2.1 Stationary Probability Distribution	70
	7.2.2 Generating Function	70

	7.2.3	Time-Inhomogeneous Transition Rates	. 73
	7.2.4	The Cumulant-Generating-Function	74
7.3		s for Market Shares by Imitation or Innovation	- 75
		Deterministic Innovation Process	76
	7.3.2	Deterministic Imitation Process	77
	7.3.3-	A Joint Deterministic Process	78
	7.3.4	A Stochastic Dynamic Model	79
7.4		chastic Model with Innovators and Imitators	80
	7.4.1	Case of a Finite Total Number of Firms •	83
7.5	Symm	etric Interactions	84
	7.5.1	Stationary State Distribution	84
	7.5.2	Nonstationary Distributions	84
Gro	owth an	d Fluctuations	85
8.1	Two Si	mple Models for thte'Emergence of New Goods	87
	8.1.1	Poisson Growth Model	87
	8.1.2	An Urn Model for Growth	88
8.2	Disap	pearance of Goods from Markets	90
		Model	91
	8.2.2	Stability Analysis	92
8.3		s of Dated Final Goods Among Households	93
	8.3.1	Model	• 94
8.4	Deterr	ninistic Share Dynamics	95
		astic Business-Cycle Model	96
8.6	A Nev	v Model of Fluctuations and Growth: Case with	
	Unde	rutil ized Factor of Production	99
	8.6.1	The Model	100
	8.6.2	Transition-Rate Specifications	101
		Holding Times	102
	8.6.4		103
	8.6.5	Equilibrium Sizes of the Sectors (Excess '	
		Demand Conditions)	104
	8.6.6	Behavior Out of Equilibrium: Two-Sector Model	105
	8.6.7	Stationary Probability Distribution:	
		The Two-Sector Model	107
	8.6.8	Emergence of New Sectors	110
	8.6.9	Simulation Runs for Multi-Sector Model	111
	8.6.10	Discussion	112
8.7	Lange	evin-Equation Approach	117
	• 8.7.1	Stationary Density Function	119
	8.7.2	The Exponential Distribution of the Growth	
		Rates of Firms	• 119

	8.8 Time-Dependent Density'and Heat Equation •	121
	8.9 Size Distribution for Old and New Goods	122
	8.9.1 Diffusion-Equation Approximation	122
	8.9.2 Lines of Product Developments and Inventions	123
9	A New Look at the Diamond Search Model	127
	9.1 Model	129
	9.2 Transition Rates "	129
	9.3 Aggregate Dynamics: Dynamics for the Mean of	
	the Fraction	130
	9.4 Dynamics for the Fluctuations	131
	9.5 Value Functions	132
	9.5.1 Expected-Value Functions	133
	9.6 Multiple Equilibria.and Cycles: An Example	134
	9.6.1 Asymmetrical Cycles	136
	9.6.1.1 Approximate Analysis	136
	9.6.1.2 Example	137
	9.7 Equilibrium Selection	138
	9.8 Possible Extensions of the Model .	139
10	Interaction Patterns and Cluster Size Distributions	141
	10.1 Clustering Processes	141
	10.2 Three Classes of Transition Rates	144
	10.2.1 Selections,	144
	10.2.2 Multisets	146
	10.2.2.1 Capacity-Limited Processes	150
	10.2.3 Assemblies	150
	10.2.3.1 Internal Configurations of Assemblies	151
	10.3 Transition-Rate Specifications in a Partition Vector	153
	10.4 Logarithmic Series Distribution	153
	10.4.1 Frequency Spectrum of the Logarithmic	
	Series Distribution	156
	10.5 Dynamics of Clustering Processes	157
	10.5.1 Examples of Clustering-Process Distributions	157
	10.5.2 Example: Ewens Sampling Formula	162
	10.5.3 Dynamics of Partition Patterns: Example	164
	10.6 Large Clusters	165
	10.6.1 Expected Value of the Largest Cluster Size	166
	10.6.2 Joint Probability Density for the Largestr Fractions	169
	10.7 Moment Calculations	171
	10.8 Frequency Spectrum	172
	10.8.1 Definition	173

		10.8.2 Herfindahl Index of Concentration	173
		10.8.3 A Heuristic Derivation	• 174
		10.8.4 Recursion Relations	176
		10.8.5 Examples of Applications	177
		10.8.6 Discrete Frequency Spectrum	177
	10.9	Parameter Estimation	178
11	Sha	re Market with Two Dominant Groups of Traders	180
		Transition Rates	181
	11.2	Ewens Distribution	183
		11.2.1 The Number of Clusters and Value of 9	184
		11.2.2 Expected Values of the Fractions	185
		11.2.3 The Largest Two Shares	186
		Market Volatility	187
	11.4	Behavior of Market Excess Demand	188
		11.4.1 Conditions for Zero Excess Demand	188
		11.4.2 Volatility of the Market Excess Demand	189
		11.4.3 Approximate Dynamics for Price Differences	
		and Power Law	190
		11.4.3.1 Simulation Experiments	192
	Арр	endix	195
		Deriving Generating Functions via Characteristic Curves	'195
	A.2	Urn Models and Associated Markov Chains	197
		A.2.1 Polya'sUrn	197
		A.2.2 Hoppe'sUrn	197
		A.2.3 Markov Chain Associated with the Urn	199
	A.3	Conditional Probabilities for Entries, Exits, and Changes	
		of Type	200
		A.3.1 Transition Probabilities	200
		A.3.2 Transition Rates	202
	A.4	Holding Times and Skeletal Markov Chains	202
		A.4.1 Sojourn-Time Models	205
	A.5	Stirling Numbers	206
		A.5.1 Introduction	206
		A.5.2 Recursions	207
		A.5.3 Relations with Combinatorics	209
		A.5.4 Explicit Expressions and Asymptotic Relations	210
		A.5.5 Asymptotics	212
		Order Statistics	213
	A.7	Poisson Random Variables and the Ewens Sampling	
		Formula	214

	A.7.1 Approximations by Poisson Random Variables	214
	A.7.2 Conditional Poisson Random Variables	216
A.8	Exchangeable Random Partitions	219
	A.8.1 Exchangeable Random Sequences	219
	A.8.2 Partition Exchangeability	221
A.9	Random Partitions and Permutations	224
	A. 9.1 Permutations	224
	A.9.2 Random Partitions	' 225
	A.9.3 Noninterference of Partitions	228
	A.9.4 Consistency	229
A. 10	Dirichlet Distributions	229
	A. 10.1 Beta Distribution	229
	A.10.2 Dirichlet Distribution	230
	A. 10.3 Marginal Dirichlet Distributions	232
	A. 10.4 Poisson^Dirichlet Distribution	232
	A. 10.5 Size-Biased Sampling	-233
A. 11	Residual Allocation Models	234
A. 12	2 GEM and Size-Biased Distributions	235
A. 13	3 Stochastic Difference Equations	240
A. 14	4 Random Growth Processes ^	242
A. 15	5 Diffusion Approximation to Growth Processes .	243
Reference	ces	245
Index		253