Jan Fabian Ehmke

Integration of Information and Optimization Models for Routing in City Logistics

Springer

Contents

1 Introduction

1

Part I Problem Description

2	City	Logistics	9
	2.1	Challenges	9
		2.1.1 Evolution of Supply Chains	10
		2.1.2 Increasing (Freight) Traffic	12
	2.2	Solution Concepts	12
		2.2.1 Perspective of Different Stake	eholders 14
		2.2.2 Urban Consolidation Centers	15
		2.2.3 City Logistics Initiatives	16
	2.3	Modeling	17
	2.4	Planning Systems	19
		2.4.1 Levels of Planning	19
		2.4.2 Architecture of a Planning Sy	vstem 20
3	Atte	ended Home Delivery	23
	3.1 Online Retail		23
	3.2	Types of Last-Mile Delivery	26
	3.3	Customer Time Windows	29
		3.3.1 Tactical Planning	29
		3.3.2 Operational Planning	30
	3.4	Implications	31

Part II Information Models

4	Kno	wledge	Discovery and I	Data Mining	37
	4.1	Know	ledge Discovery F	Process	37
		4.1.1	Preprocessing	"	39

Contents

		4.1.2	Data Mining	41
		4.1.3	Verification	43
	4.2	Cluste	er Analysis	44
		4.2.1	Clustering Approaches	46'
		4.2.2	Clustering Algorithms	48
		4.2.3	Validation of Clusterings	52
	4.3	Explo	ratory Data Analysis	55
5	Ana	lysis of	f Floating Car Data	59
	5.1	Data (Collection	61
		5.1.1	······································	61
		5.1.2	Telematics-Based Approach	62
	5.2	Prepro	ocessing	66
			Attribute "Time"	66
			Attribute "Link"	66
		5.2.3	Attribute "Speed"	67
		5.2.4	1	68
		5.2.5	Spatial Distribution of Measurements	68
	5.3		Level Aggregation	69
	5.4	Second Level Aggregation		72
		5.4.1	Preprocessing	72
		5.4.2	Clustering Tendency	72
			Clustering Approach	73
		5.4.4	Number of Clusters	74
	5.5	Explo	oratory Data Analysis	75
		5.5.1	20 20 20 20	76
		5.5.2	Second Level Aggregation	78

Part III Integration of Information Models

6	Pro	83	
	6.1	Static Information Models	86
		6.1.1 Digital Roadmap	86
		6.1.2 Implementation	89
	6.2	Time-Dependent Information Models	90
		6.2.1 Modeling of Time Dependence	91
		6.2.2 Implementation	97
	6.3	Computation of Shortest Paths	100
		6.3.1 Shortest Path Problem	100
		6.3.2 Time-Dependent Shortest Path Problem	102

Contents

7	Eva	105	
	7.1	Experimental Setup	105
		7.1.1 Traveler Scenarios	106
		7.1.2 Traffic Scenarios	106
		7.1.3 Information Models	107
	7.2	Simulation and Evaluation of Shortest Paths	107
	7.3	Computational Results	109
		7.3.1 Evaluation of Example Itineraries	109
		7.3.2 Overall Evaluation	112

Part IV Optimization Models

8	Rou	ting in	City Logistics	119
	8.1	Routir	ng of a Single Vehicle	120
		8.1.1	Traveling Salesman Problem	120
		8.1.2	Time-Dependent Traveling Salesman Problem	127
	8.2	Routir	ng of a Fleet of Vehicles	134
		8.2.1	Vehicle Routing Problem	134
		8.2.2	Time-Dependent Vehicle Routing Problem	137
	8.3	Custo	mer Time Windows	140
		8.3.1	Vehicle Routing Problem with Time Windows	141
		8.3.2	Time-Dependent Vehicle Routing Problem	
			with Time Windows	145
9	Eva	luation	of Optimization Models	157
	9.1	Exper	imental Setup	157
		9.1.1	Customer Scenarios	158
		9.1.2	Information Models	158
		9.1.3	Evaluation of Heuristics	159
	9.2	9.2 Routing of a Single Vehicle		161
		9.2.1	Customer Scenario 1	162
		9.2.2	Customer Scenario 2	164
		9.2.3	Customer Scenario 3	165
	9.3	9.3 Routing of a Fleet of Vehicles		168
		9.3.1	Performance of Neighborhood Operators	168
		9.3.2	Computational Results	170
	9.4	Custo	mer Time Windows	172
		9.4.1	Role of Customer Time Windows	173
		9.4.2	Simulation of Customer Time Windows	173
		9.4.3	Computational Results	174

10 Conclusions and Outlook		179
References	:	183
Index		195