PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON

GENETIC ALGORITHMS

Michigan State University, East Lansing, MI July 19-23,1997

Editor/Program Chair: Thomas Back

Supported by:

Office of Naval Research
Naval Research Laboratory
Philips Laboratories, Philips Electronics North America Corporation
International Society for Genetic Algorithms
Genetic Algorithms Research and Applications Group
(MSU GARAGe)

Morgan Kaufmann Publishers, Inc. San Francisco, California

CONTENTS

Preface.	
ICGA-97 Conference Organization	X111
THEORY	
Cross-Competition between Building Blocks—Propagating Information to Subsequent Generations	2
Conjugate Schema in Genetic Search	10
An Experimental Analysis of Schema Creation, Propagation and Disruption in Genetic Programming	18
Phenotypical Building Blocks for Genetic Programming. Thomas Haynes	26
Effective Degrees of Freedom in Genetic Algorithms and the Block Hypothesis	34
A Walsh Analysis of NK-Landscapes	41
An Information Measure of Landscapes. Vesselin Vassilev	49
Fitness Distance Correlation Analysis: An Instructive Counterexample. Lee Altenberg	57
Epistasis as a Basic Concept in Formal Landscape Analysis. B. Naudts, D. Suys, and A. Verschoren	65
A Condition for the Genotype-Phenotype Mapping: Causality	73
Genetic Algorithm Hardness Measures Applied to the Maximum Clique Problem Terence Soule and James A. Foster	81
A Wave Analysis of the Subset Sum Problem • MarkJelasity	89
Inductive Genetic Programming and Superposition of Fitness Landscapes. Vanio Slavov and Nikolay I. Nikolaev	97
A Random Function Based Framework for Evolutionary Algorithms. Laurence D Merkle and Gary B. Lamont	105
Predicting Speedups of Ideal Bounding Cases of Parallel Genetic Algorithms. Erick Cantu-Paz and David E. Goldberg	113
Analysis of a Genetic Model	121
A Generalized Stationary Point Convergence Theory for Evolutionary Algorithms: William Hart	127
An Optimal Stop Criterion for Genetic Algorithms: A Bayesian Approach	135

SELECTION

A New Selection Operator Dedicated to Speciation	144
Selection Schemes, Elitist Recombination, and Selection Intensity	152
Takeover Time in a Noisy Environment	160
Reflections on Bandit Problems and Selection Methods in Uncertain Environments	166
Double Selection vs. Single Selection in Diffusion Model GAs Patricia M. White and Chrisila C. Pettey	174
An Analysis of Local Selection Algorithms in a Spatially Structured Evolutionary Algorithm	181
REPRESENTATIONS	
Bit Representations with a Twist	188
Tackling the Representation Problem by Stochastic Averaging J. Ludvig, J. Hesser, andR. Manner	196
A Two-Dimensional Embedding of Graphs for Genetic Algorithms. Byung-Ro Moon and Chun-Kyung Kim	204
COMPARISONS	
Genetic Algorithms versus Experimental Methods: A Case Study	214
A Comparison of Global and Local Search Methods in Drug Docking	221
ALGORITHMIC TECHNIQUES	
A Continuous Genetic Algorithm for Global Optimization	230
A Real Coded Genetic Algorithm with an Explorer and an Exploiter Populations. Shigeyoshi Tsutsui, Ashish Ghosh, David Come, and Yoshiji Fujimoto	238
A Real Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distributed Crossover Isao Ono andShigenobu Kobayashi	246
Genetic-Entropic Algorithm: An Application to NK-Model and Statistical Analysis	254
An Extended Framework for Overcoming Premature Convergence. Kazuhiro Ohkura andKanji Ueda	260
Alternative Random Initialization in Genetic Algorithms Leila Kallel and Marc Schoenauer	268
The Quality of Pseudo-Random Number Generators arid Simple Genetic Algorithm Performance	276

Solving Similar Problems Using Genetic Algorithms and Case-Based Memory	283
Toward Civilized Evolution: Developing Inhibitions	291
Adaptation to Changing Environments by Means of the Memory Based Thermodynamical Genetic Algorithm Naoki Mori, Seiji Imanishi, Hajime Kita, and Yoshikazu Nishikawa	299
Using Software Visualization Technology to Help Evolutionary Algorithm Users Validate Their Solutions Trevor D. Collins	307
Steady State Genetic Programming with Constrained Complexity Crossover Using Species Sub-Population Andrew H. Watson and Ian C. Parmee	315
Boundary Operators for Constrained Parameter Optimization Problems. Marc Schoenauer andZbigniew Michalewicz	322
Combining Constraint Processing and Genetic Algorithms for Constraint Satisfaction Problems Elena Marchiori	330
Using Problem Generators to Explore the Effects of Epistasis	338
Evolution of Graph-Like Programs with Parallel Distributed Genetic Programming	346
Crossover Operator Biases: Exploiting the Population Distribution	354
Empirical Observations on the Roles of Crossover and Mutation. Annie S. Wu, Robert K. Lindsay, and Rick Riolo	362
Evolutionary Computation in Multi-Agent Environments: Partners	370
The Effects and Evolution of Tag-Mediated Selection of Partners in Populations Playing the Iterated Prisoner's Dilemma	378
Effects of Contest Length and Noise on Reciprocal Altruism, Cooperation, and Payoffs in the Iterated Prisoner's Dilemma	386
Coevolving Cellular Automata: Be Aware of the Red Queen!	393
Regulating the Amount of Information Used for Self-Adaptation in Cultural Algorithm	401
DNA to Protein: Transformations and Their Possible Role in Linkage Learning	409
CLASSIFIER SYSTEMS	
A Study of the Generalization Capabilities of XCS	418
Discovering Risk of Disease with a Learning Classifier System	426
A Network Genetic Algorithm for Concept Learning	434

Information Theory and NEXTPITCH: A Learning Classifier System Francine Federman and Susan Fife Dorchak	»442
APPLICATIONS	
Edge Assembly Crossover: A High-Power Genetic Algorithm for the Travelling Salesman Problem:	450
Improving Heuristic Algorithms for the Travelling Salesman Problem by Using a Genetic Algorithm to Perturb the Cities. Christine L. Vqlenzuela and L. P. Williams $_{v(,-}$., •	458
A Genetic Local Search Approach to the Quadratic Assignment Problem. Peter Mer z and Bernd Freisleben	465
Optimization of Large Scale Parcel Distribution Systems by the Breeder Genetic Algorithm (BGA)	473
A Genetic Algorithm Approach to Dynamic Job Shop Scheduling Problems	481
Solving the Multiple Resource Constrained Project Scheduling Problem with a Hybrid Genetic Algorithm E. Ramat, G. Venturini, C. Lente, and M. Slimane	489
A Genetic Algorithm Hybrid for Hierarchical Reactive Scheduling	497
Effectiveness of Genetic Local Search Algorithms; Hisao Ishibuchi, Tadahiko Murata, and Shigemitsu Tomioka	505
Using Case Based Learning to Improve Genetic Algorithm Based Design Optimization. **Khaled Rasheed and Haym Hirsh**	513
Optimizing Engineering Designs Using a Combined Genetic Search Kalyanmoy Deb and Mayank Goyal	521
Co-operative Evolutionary Strategies for Single Component Design	529
Using Genetic Algorithms with Local Search for Thin ¹ Film Metrology	537
A Coevolutionary Genetic Algorithm for a Game Approach to Structural Optimization	545
Car Suspension Design for Comfort Using Genetic Algorithm. Kalyanmoy Deb and Vikas Saxena	553
Simultaneous Feature Scaling and Selection Using a Genetic Algorithm	561
Messy Genetic Algorithms for Subset Feature Selection. D. Whitley, J. R Beveridge, C. Guerra-Salcedo, and C. Graves	568
A Genetic Approach to Stable Matching. Brian Aldershofand Olivia M. Carducci	576
Optimal Placements of Flexible Objects: An Evolutionary Programming Approach. 5. K Cheung, K. S. Leung, A. Albrecht, and C. K. Wong	583
A Genetic Algorithm for Packing Three-Dimensional Non-Convex Objects Having Cavities and Holes	591
A Genetic Algorithm for Weight Selection in H_m Control Design	599

Robust Design of Multicommodity Integral Flow Networks	607
Performance of Diploid Dominance with Genetically Synthesized Signal Processing Networks	615
A Genetic Algorithm Approach to Planning the Telecommunications Access Network David Brittain, Jon Sims Williams, and Chris McMahon	623
Wireless LAN Design Using Hierarchical Genetic Algorithm	629
Genetic Algorithm for Restrictive Channel Routing Problem	636
An Adaptive Network Routing Algorithm Employing Path Genetic Operators	643
Local Search Genetic Algorithm for Optimization of Highly Reliable Communications Networks	650
A Non-Generational Genetic Algorithm for Multiobjective Optimization	658
The Neighborhood Constraint Method: A Genetic Algorithm-Based Multiobjective Optimization Technique Daniel H. Loughlin and S. Ranjithan	<u>.6</u> 666
A Multiple Criteria Genetic Algorithm for Containership Loading	<u>674</u>
Use of Genetic Algorithms in Multicriteria Optimization to Solve Industrial Problems A. Gaspar Cunha, Pedro Oliveira, and Jose A. Covas	682
Resolving Social Dilemmas Using Genetic Algorithms: Initial Results	689
On Using Interactive Genetic Algorithms for Knowledge Discovery in Databases. G. Venturini, M. Slimane, F. Morin, and JP. Asselin de Beauville	696
Option Pricing with Genetic Algorithms: The Case of European-Style Options	704
The Cryptanalysis of a Three Rotor Machine Using a Genetic Algorithm	712
Adaptive Combustion Balancing in Multiple Burner Boiler Using a Genetic Algorithm with Variable Range of Local Search	719
Prediction of Nonlinear and Nonstationary Time-Series Using Self-Adaptive Evolution Strategies with Individual Memory	727
Evolutionary Statistics: Using a Genetic Algorithm and Model Reduction to Isolate Alternate Statistical Hypotheses of Experimental Data David Rogers	735
Genetic Programming Estimates of Kolmogorov Complexity	743
The Emergence of Emergence Distributions: Using Genetic Algorithms to Test Biological Theories	751

ICGA Contents

X

NEURAL NETWORKS

Culling and Teaching in Neuro-Evolution		760
Paul McQuesten andRisto Miikkulainen		
Evolving Neural Networks to Play Go		768
Fitness Functions for the Optimization of Self-Organizin Daniel Polani	g Mapst	776
Evolution of a Hopfield Associative Memory by the Bre Akira Imada and Keijiro Araki	eder Genetic Algorithm	784
On-line Adaptation of Neural Networks with Evolvable Masahiro Murakawa, Shuji Yoshizawa, Isamu Kqjit		792
Key Word Index		801
Author Index	<u>': : : : : : : : : : : : : : : : : : : </u>	807