Jürgen Gausemeier Joachim Lückel (Hrsg.)

Entwicklungsumgebungen Mechatronik

Methoden und Werkzeuge zur Entwicklung mechatronischer Systeme

Entwicklungsumgebungen Mechatronik

Methoden und Werkzeuge zur Entwicklung mechatronischer Produkte

Inhalts	Inhaltsverzeichnis			
Teil A: Einführung in die Mechatronik				
1	Herausforderung integrativer Maschinenbau	1		
1.1	Potenziale des integrativen Maschinenbaus	. 3		
1.1.1	Prinzipielle Produktstrukturen	4		
1.1.2	Intelligente Systeme.	9		
1.1.3	Systemkomposition mit Lösungselementen	. 12		
1.2	Prozeßstrukturen in der Produktentwicklung	15		
1.2.1	Entwicklungssystematiken	16		
1.2.2	Die Ordnungsmatrix zur Konstruktionstechnik	18		
1.2.3	Integrative Planung und Entwicklung innovativer			
	Maschinenbauerzeugnisse.	. 19		
1.3	Literaturverzeichnis.	22		
2	Entwicklung mechatronischer Systeme	23		
2.1	Komponenten mechatronischer Systeme	24		
2.1.1	Mechanische Struktur	26		
2.1.2	Sensoren	. 27		
2.1.3	Aktoren	30		
2.1.4	Informationsverarbeitung	33		
2.2	Phasenmodell der Entwicklung mechatronischer Systeme	41		
2.2.1	Produktkonzipierung.	43		
2.2.2	Produktentwurf und -ausarbeitung	48		
2.2.3	Integrative Vorgehensweisen	48		
2.3	Bereitstellung von Entwicklungsumgebungen	53		
2.4	Literaturverzeichnis	61		
Teil B:	Querschnittaufgaben			
3	Entwicklungsmethodik Mechatronik	.65		
3.1	Vorgehen in der Produktentwicklung Mechatronik	66		
3.1.1	Zielgrößen und Funktionsstrukturen	.69		
3.1.2	Systempartitionierung und Lösungsfindung			
3.1.3	Wirkparameter und Verhaltensmodelle.	75		
3.1.4	Zielgrößenerfüllung			
3.1.5	FMEA mit Konzeptmodellen			
3.1.6	Vision und Realität	82		

Seite ii Inhaltsverzeichnis

3.2	Methodische Produktentwicklung Fahrdynamik	83
3.2.1	Vorgehen beim Fahrzeughersteller	86
3.2.2	Vorgehen beim Zulieferer	88
3.2.3	Integration von Verhaltensmodellen in einem kooperativer	n
	Entwicklungsprozess	90
3.3	Methodische Produktentwicklung Feinwerktechnik	92
3.3.1	Aktivitäten bei der Entwicklung von Nadeldruckern	93
3.3.2	Funktionsmodellierung mit RODON.	96
3.3.3	Funktionsmodellierung der Kinematik	103
3.3.4	Produktkonzipierung am Beispiel eines Blättermoduls	110
3.4	Literaturverzeichnis	116
4	Modellbildung	. 119
4.1	Methodik zur Modellbildung	119
4.1.1	Problematik	119
4.1.2	Entwicklungswerkzeuge in der Modellbildung	124
4.1.3	Ansatz zur Modellbildung des Mechatronik Laboratoriums	
	Paderborn	
4.2	Modellaustauschprozess.	129
4.3	Modellierung eines PKW mit ABS unter Verwendung von	404
	CAMeL	
4.4	Fahrzeugsimulation mit CASCaDE.	
4.5	Zusammenfassung und Ausblick	
4.6	Literaturverzeichnis	152
5	Integrationsplattform	
5.1	Integrationstechniken (Modell-und Systemebene)	
5.2	Konzeption einer Integrationsplattform	
5.2.1	Funktionale Systemarchitektur der Integrationsplattform .	
5.2.2	Systemkomponenten der Integrationsplattform	
5.3	Bereitstellung der Workflow-und PDM-Funktionalität	184
5.3.1	Integrationskomponente ASTAI(R).	
5.3.2	Produktdatenmanagementsystem Small-PDM	190
5.4	Beispielhafte Anwendungen der Konvertierungs- und	
	Kopplungsdienste	
5.4.1	RODON-CAMeL Schnittstelle.	
5.4.2	RODON-Java Schnittstelle	
5.4.3	MatrixX-RODON Schnittstelle	
5.4.4	Simpack-Amesim Schnittstelle	
5.5	Literaturverzeichnis	209

6	Mechatronische Lösungselemente.	211
6.1	Grundlagen und Anforderungen	212
6.1.1	Definition eines mechatronischen Lösungselements	212
6.1.2	Informationsbedarf im Entwicklungsprozess	214
6.1.3	Anforderungen an die Informationsbereitstellung	216
6.2	Stand der Technik	220
6.2.1	Sachmerkmal-Leisten	220
6.2.2	Merkmal-Lexika	. 221
6.2.3	Konstruktionskataloge	222
6.2.4	STEP (ISO 10303)-MechaSTEP	. 224
6.2.5	Gegenüberstellung existierender Ansätze/	
	Handlungsbedarf	226
6.3	Informationsbereitstellung	227
6.3.1	Zusammenspiel intern und extern verwalteter	
	Lösungselemente	. 227
6.3.2	Suche nach Lösungselementen	228
6.3.3	Informationsgehalt von Lösungselementen .	242
6.3.4	Unterstützende MehrwertdiensteVleistungen	.247
6.4	Prototyphafte Realisierung	. 248
6.4.1	Anwendungsszenario.	. 248
6.4.2	Systemaufbau	250
6.4.3	Grobarchitektur des Systems	253
6.5	Literaturverzeichnis	. 255
Teil C:	Anwendungsklassen	
7	Entwicklungsumgebung Feinwerktechnik	.259
7.1	Entwicklungsprozess	259
7.1.1	Entwicklung mechatronischer Produkte unter	
	Berücksichtigung des akustischen Verhaltens	260
7.1.2	Reverse Engineering	262
7.2	Eingesetzte Methoden und Werkzeuge	. 264
7.2.1	Einteilung der Methoden und Werkzeuge	265
7.2.2	Ergebnisse der akustischen Voruntersuchung	266
7.2.3	Festlegung der Methoden und Auswahl geeigneter	
	IT-Werkzeuge	277
7.3	Einsatz der Entwicklungsumgebung.	
7.3.1	Erprobung der Werkzeuge am Beispiel Sparbuchdrucker	282
7.3.2	Erstellen einer Entwicklungsumgebung zur Optimierung	
	des akustischen Verhaltens feinwerktechnischer Geräte	314
7.3.3	Veränderungen in der Methodik durch den Einsatz der	
	erweiterten Entwicklungsumgebung	318

Seite iv Inhaltsverzeichnis

7.3.4	Einarbeitung der Entwickler bei der Einführung einer	
	erweiterten Entwicklungsumgebung	318
7.4	Zusammenfassung und Ausblick	319
7.5	Literaturverzeichnis	321
8	Entwicklungsumgebung Hochleistungshydraulik	_323
8.1	Produktentwicklung Fahrdynamikregelung BMW/Bosch	323
8.1.1	Entwicklungsprozess Fahrdynamikregelung	324
8.1.2	Eingesetzte Methoden und Werkzeuge	.333
8.1.3	Einsatz der Entwicklungsumgebung	.348
8.2	Simulation von Fehlverhalten und FMEA mittels RODON.	353
8.2.1	Struktur des Gesamtmodells	354
8.2.2	Modellierung der ABS-Logik	357
8.2.3	Regelungsvorgang im Nominalfall	358
8.2.4	Regelungsvorgang bei Fehlverhalten	359
8.2.5	Failure Mode and Effects Analysis (FMEA).	362
8.2.6	Ergebnisse	364
8.3	Validierung Fahrsimulator	366
8.3.1	Entwicklungsaufgaben	366
8.3.2	Eingesetzte Methoden und Werkzeuge	368
8.3.3	Entwicklungsaktivitäten	369
8.3.4	Ergebnisse beim Einsatz der Entwicklungsumgebung	373
8.4	Simulation eines ABS-Bremsvorgangs unter Verwendung	
	mehrerer Modellierungs- und Simulationswerkzeuge	374
8.4.1	Modellbildung	375
8.4.2	Ergebnisse	380
8.5	Literaturverzeichnis	381
9	Entwicklungsumgebung	
	Servohydraulische Prüfeinrichtungen	
9.1.	Produktklasse Servohydraulische Prüfeinrichtungen	.383
9.1.1	Auswahl eines geeigneten Produktes	384
9.1.2	Analyse des Entwicklungsprozesses	386
9.2	Eingesetzte Methoden und Werkzeuge	. 386
9.2.1	CAD-Werkzeuge	387
9.2.2	Mess- und Analysewerkzeuge der Mechanik	388
9.2.3	Simulationswerkzeuge für Hydraulik und	
	Regelungstechnik	390
9.2.4	Datenaustausch und Werkzeugkoppelung	390
9.3	Ergebnisse des Reverse Engineering	393
9.4	Einsatz der Entwicklungsumgebung.	401
9.4.1	Einsatzszenario Rütteltisch	401
9.4.2	Installation der ausgewählten Werkzeuge	402

9.4.3	Datenverwaltung und Einbindung der IT-Werkzeuge in eine
	globale Entwicklungsumgebung 416
9.4.4	Einsatz der Entwicklungsumgebung SHP
9.4.5	Einarbeitung der Entwickler bei der Einführung einer
	erweiterten Entwicklungsumgebung 424
9.5	Zusammenfassung und Ausblick
9.6	Literaturverzeichnis
Teil D:	Schlussfolgerungen
10	Resümee 427
10.1	Erfahrungen aus den Querschnittprojekten 427
10.2	Erfahrungen aus den Anwendungsklassen 430
10.3	Multiplikation der Ergebnisse
11	Forschungsbedarf 433
11.1	Unternehmensbefragung 433
11.2	Abgleich mit der vordringlichen Aktion Kooperatives
	Produktengineering
	Stichwortverzeichnis