

Raimund Lücker

Grundlagen digitaler Filter

Einführung in die Theorie linearer zeitdiskreter Systeme und Netzwerke

Mit 96 Abbildungen

Springer-Verlag Berlin Heidelberg New York 1980

Inhaltsverzeichnis

1.	Einle	itung.	.1			
2.	Zeitdiskrete Signale und Systeme					
	2.1.	Zeitdiskrete Signale, Zahlenfolgen	8			
	2.2.	Zeitdiskrete Systeme	6			
		2.2.1. Allgemeines	6			
		2.2.2. Lineare zeitinvariante Systeme (LTI-Systeme)	8			
		2.2.3. Beschreibung kausaler LTI-Systeme durch Differenzengleichungen	1			
		2.2.4. Schlußbemerkung	3			
3.		z-Transformation				
		Einleitung				
	3.2.	Definition	5			
	3.3.	Beispiele	9			
		Eigenschaften von z-Transformierten				
	3.5.	Inverse z-Transformation	5			
	3.6.	Fourier-Transformation	5			
		3.6.1. Definition	5			
		3.6.2. Fourier-Transformation von Abtastwerten	8			
	3.7.	Einseitige z-Transformation	9			
4.	Über	tragungsfunktion und Frequenzgang	1			
	4.1.	Übertragungsfunktion	1			
	4.2.	Frequenzgang	4			
	4.3.	Systeme mit speziellem Frequenzgang	9			
		4.3.1. Allpässe	9			
		4.3.2. Linearphasige Systeme 6	1			

VIII Inhaltsverzeichnis

4.4	4. Er	weiterung	.63
5.	Zeit	diskrete Netzwerke	.65
	5.1.	Operationen, Bauelemente, Netzwerke	.65
	5.2.	Elementare Netzwerkstrukturen	69
		5.2.1. Erste und zweite kanonische Form	.69
		5.2.2. Kaskaden- und Parallelform	.72
	5.3.	Spezielle Netzwerkstrukturen	.75
		5.3.1. Systeme zweiten Grades	.75
		5.3.2. Allpässe	.77
		5.3.3. Linearphasige Systeme	.78
	5.4.	Systeme mit mehreren Eingängen und mehreren Ausgängen.	.80
6.	Matr	ixbeschreibung zeitdiskreter Netzwerke	.82
	6.1.	Signalflußgraphen	82
	6.2.	Zweigübertragungsgleichungen zeitdiskreter Netzwerke.	.85
	6.3.	Signalflußmatrizen zeitdiskreter Netzwerke	.88
7.	Anal	yse zeitdiskreter Netzwerke	91
	7.1.	Einleitung	91
	7.2.	Berechnung der Zustandsdarstellung	92
		7.2.1. Allgemeines.	92
		7.2.2. Analyse durch schrittweise Matrixreduktion	97
		7.2.3. Numerische Zustandsanalyse.	100
	7.3.	Berechnung der Übertragungsfunktion	101
	7.4.	Numerische Berechnung des Frequenzgangs.	103
	7.5.	Stabilitätsuntersuchungen im Zustandsraum	104
		7.5.1. Charakteristisches Polynom.	105
		7.5.2. Lösung der Zustandsgieichungen im Zeitbereich	108
		7.5.3. Lyapunov-Stabilität	Ю
		7.5.4. Erreichbarkeit und Beobachtbarkeit	113
	7.6.	Strukturbezogene Zeitbereichsanalyse.	118

Inhaltsverzeichnis IX

8.	Strukturunabhängige Synthese zeitdiskreter Netzwerke						
	8.1.	Einleitu	ıng.		5		
	8.2.	Konzep	tion des S	Syntheseverfahrens	6		
	8.3.	Synthe	se durch s	schrittweise Matrixerweiterung	9		
	8.4.	Beispie	ele		32		
9.	Entw	urf zeite	diskreter	IIR-Systeme	1		
	9.1.	Einleitu	ıng		1		
	9.2.	Entwurf	f nach vor	geschriebener Impulsantwort	2		
		9.2.1.	Systemid	lentifikation bei vorgeschriebener Impulsantwort 14	2		
		9.2.2.		ntwort-Invariante Transformation zeit- erlicher Systeme	5		
	9.3.	Entwur	f nach Vo	rschriften bezüglich des Frequenzganges	7		
		9.3.1.	Allgemei	nes	7		
		9.3.2.	Entwurf d	durch Transformation zeitkontinuierlicher			
			Systeme.		9		
			9.3.2.1.	Bilineartransformation	9		
			9.3.2.2.	Entwurf zeitkontinuierlicher Systeme	52		
				9.3.2.2.1. Frequenztransformationen			
				9.3.2.2.3. Abschließende Bemerkungen	58		
			9.3.2.3.	Beispiel	0		
		9.3.3.		mittels transformierter Verfahren der nuierlichen Theorie	'5		
			9.3.3.1.	Allpaßtransformationen	5		
			9.3.3.2.	Entwurf normierter Tiefpässe	0		
		9.3.4.		gitalfilterentwurf nach zeitkontinuierlichen veigschaltungen	31		
			9.3.4.1.	Spannungswellenstreumatrizen zeit- kontinuierlicher Mehrtore	32		
			9.3.4.2.	Entwurfsablauf	35		
			0 2 4 2	Poignial 10	າວ		

X Inhaltsverzeichnis

10.	Entwurf linearphasiger FIR-Systeme nach Vorschriften im Frequenz-	
	bereich	196
	10.1. Einleitung.	196
	10.2. Allgemeines zum Entwurf linearphasiger FIR-Systeme	198
	10.3. Fourier-Approximation, Fensterung.	.208
	10.4. Tschebyscheff-Approximation.	220
	10.4.1. Formulierung der Approximationsaufgabe.	220
	10.4.2. Bemerkungen zur Lösung der Approximationsaufgabe	222
	10.5. Abschließende Bemerkungen.	231
11.	Bemerkungen zum Verhalten digitaler Filter	232
Anh	ang: FORTRAN-Programme	237
Lite	eraturverzeichnis	242
Sac	chverzeichnis	252