Jiujun Zhang Editor

PEM Fuel Cell Electrocatalysts and Catalyst Layers

Fundamentals and Applications

Springer

Contents

1	PEN	A Fuel	Cell Fundamentals	1
	Xiao	-Zi Yud	an and Haijiang Wang	
	1.1	Overv	riew	1
		1.1.1	Introduction	1
		1.1.2	Main Cell Components and Materials	11
		1.1.3	PEM Fuel Cell Operation	17
		1.1.4	PEM Fuel Cell Applications	25
	1.2	Thern	nodynamics	
		1.2.1	Basic Reactions	31
		1.2.2	Heat of Reaction	41
		1.2.3	Effect of Operation Conditions on Reversible Fuel Cell	
			Potential	42
		.2.4	Open Circuit Voltage	44
		.2.5	Fuel Cell Efficiency	
		.2.6	Summary	
	13	React	ion Kinetics	53
		.3.1	Electrode Reactions	53
		.3.2	Reaction Rate	
		.3.3	Mass Transfer	60
		.3.4	Multiple Kinetics	65
		.3.5	Polarization Curve and Voltage Losses	67
		1.3.6	Measures to Improve Cell Performance^.	
	Refe	rences-		79
2	Elec	trocat	alytic Oxygen Reduction Reaction	89
	Cha	ojie Sol	ng and Jiujun Zhang	
	2.1	Introd	uction	
		2.1.1	Electrochemical O ₂ Reduction Reactions	
		2.1.2	Kinetics of the O ₂ Reduction Reaction	90
		2.1.3	Techniques Used in Electrocatalytic O ₂ Reduction Reactions.	
	2.2	Oxyge	en Reduction on Graphite and Carbon	101
		2.2.1	Oxygen Reduction Reaction Mechanisms	102

	2.2.2	Kinetics of the ORR on Carbon Materials	107
	2.2.3	Catalytic Sites on Carbon Materials	.108
2.3	Oxyg	en Reduction Catalyzed by Quinone and Derivatives	.109
	2.3.1	AO Process for O_2 Reduction to Produce H_2O_2	.109
	2.3.2	ORR Mechanism Electrochemically Catalyzed by Quinone	.110
2.4	Oxvg	en Reduction on Metal Catalysts	.110
	2.4.1	ORR Mechanism on Pt	.110
	2.4.2	Mixed Pt Surface and Rest Potential on Pt	112
	2.4.3	ORR Kinetics on Pt	113
	2.4.4	ORR on Pt Allovs	114
	2.4.5	Catalytic ORR on Other Metals	116
2.5	ORR	on Macrocyclic Transition Metal Complexes	117
2.5	251	ORR Mechanisms Catalyzed by Transition Metal Macrocyclic	
	2.3.1	Complexes ^	117
	252	Transition Metal Macrocycles as ORR Catalysts	117
	2.5.2	ORR Kinetics Catalyzed by Transition Matal Macrocyclic	
	2.3.3	Complexes	121
26	OPP	Complexes	121
2.0	2.6.1	OPP Catalyzed by Transition Matal Chalaggenides	122
	2.0.1	ORR Catalyzed by Transition Metal Chalcogenides	124
27	2.0.2	ORR Catalyzed by Transition Metal Carbide	124
2.7	Super	Oxide Ion.:	.125
	2.7.1	Production of Superoxide ion by Other Methods	.125
	2.7.2	Properties of Superoxide Ion	126
	2.7.3	Stability of Superoxide Ion	127
•	2.7.4	Superoxide Production by Electrocatalysis	127
2.8	Concl	usions	.129
Refe	erences.		129
			125
Elec	trocata	$Hytic H_2 \text{ Oxidation Reaction}$	135
Hui	Li, Kun	chan Lee and Jiujun Zhang	
3.1	Introd	uction	135
3.2	Electi	ooxidation of Hydrogen	136
	3.2.1	Mechanism of the Hydrogen Oxidation Reaction	.136
	3.2.2	Thermodynamic Considerations for the Hydrogen Electrode	
		Reaction	138
	3.2.3	Kinetics of the Hydrogen Oxidation Reaction	138
	3.2.4	Hydrogen Adsorption Behavior?.	143
	3.2.5	Kinetic Parameters of the Hydrogen Oxidation Reaction	. 147
3.3	Electi	ocatalysis of Hydrogen Oxidation	149
	3.3.1	Platinum and Platinum Group Metals (Pt, Ru, Pd, Ir, Os,	
		andRh)	149
	3.3.2	Carbides	156
	3.3.3	Raney Nickel	.156
	3.3.4	Typical Example Analysis - PtRu Alloy as a CO-tolerant	
		Catalyst for the HOR	
3.4	Concl	usions	.159
Refe	erences.	;	

4	Electrocatalytic Oxidation of Methanol, Ethanol and Formic Acid	165
	ElodGyenge	
	4.1 Introduction	
	4.1.1 Historical Overview: 1960-1990	165
	4.1.2 Objectives	
	4.2 Reaction Pathways, Catalyst Selection and Performance:	
	Example Analysis	172
	4.2.1 Methanol Electrooxidation	172
	4.2.2 Formic Acid Electrooxidation	201
	4.2.3 Ethanol Electrooxidation	219
	4.2.4 Non-precious Metal Catalysts for Methanol, Formic Acid, and Ethanol Oxidation	
	4.3 Advances in Anode Catalyst Layer Engineering: Example	230
	4.3.1 Engineering of the Catalyst Surface and Mornhology	230
	4.3.2 The Catalytic Interface: Catalyst/Support/Ionomer	
	Interaction	236
	44 Conclusions	269
	References	270
5	Application of First Principles Methods in the Study of Fuel Cell Air-Cathode Electrocatalysis	289
	Zheng Shi	
	5.1 Introduction	289
	5.2 Background	290
	5.2.1. Theoretical Methods	290
	5.2.2 Oxygen Reduction Reaction	291
	5.3 Surface Adsorption	293
	5.3.1 Computational Methods	294
	.5.3.2 Adsorption on Transition Metals	295
	5.3.3 Adsorption on Bimetallic Alloys	299
	54 Activation Energy	306
	5.4.1 Computational Method	306
	5.4.2 Example Calculations	307
	5.5 Thermodynamic Properties: Reversible Potential and	
	Reaction Energy	311
	5.5.1 Reversible Potential >	311
	5.5.2. Reaction Thermodynamics	313
	5.6 Study of Non-noble Catalysts	316
	57 Summary	324
	References	324
6	Catalyst Contamination in PEM Fuel Cells	331
	HuiLi, Chaojie Song, Jianlu Zhang and Jiujun Zhang	
	6.1 Introduction	
	6.2 Anode Catalyst Layer Contamination	331
	6.2.1 Impacts of Carbon Dioxide	

		6.2.2 Impacts of Hydrogen Sulfide (H ₂ S)	.334
		6.2.3 Impacts of Ammonium (NH ₃)	
		6.2.4 Modeling of the Contamination of the PEMFC	
		Anode Catalyst	
		6.2.5 Mitigation of Anode Contamination;	
	6.3	Cathode Catalyst Layer Contamination	
		6.3.1 SO _x Contamination	
		6.3.2 NO _X Contamination	
		6.3.3 NH ₃ and H ₂ S Contamination	
		6.3.4 Volatile Organic Compounds (VOCs) Contamination	.347
		6.3.5 Ozone Contamination	
		6.3.6 The Contamination Effects of Multi-contaminants	348
		6.3.7 Modeling of PEMFC Cathode Catalyst Contamination	.349
	6.4	Additive Effects of Anode and Cathode Contamination	349
	6.5	Summary	
	Refe	rences	
7	PEN	I Fuel Cell Catalyst Layers and MEAs	355
	Peik	angShen > •	
	7.1	Fundamentals of Catalyst Layers	355
		7.1.1 Components and Structure	
		7.1.2 Functions and Reactions;	
		7.1.3 Factors Affecting the Performance of CLs	
		7.1.4 Catalyst Layers for Liquid Fuel Cells	
		7.1.5 Catalyst Layers for Anion Exchange Membrane Fuel Cells	. 367
	7.2	Principles of Membrane Electrode Assembly (MEA)	.369
		7.2.1 Classification of MEA Materials;:	
		7.2.2 Methods for MEA Fabrication;	
		7.2.3 Technical Consideration •:;;	
		7.2.4 MEA for Anion Exchange Membrane Fuel Cells	
	7.3	Conclusions	
	Refe	rences	
8	Cat	lyst Layer Modeling: Structure, Properties and Performance	. 381
	Mici	ael H. Eikerling, Kourosh Malek and Qianpu Wang	
	8.1	Introduction	. 381
	8.2	Understanding Structure and Operation of Catalyst Layers	
		8.2.1 Challenges for the Structural Design	
		8.2.2 Porous Electrode Theory: Historical Perspective	
		8.2.3 Misapprehensions and Controversial Issues	
		8.2.4 Effectiveness of Catalyst Utilization	
		8.2.5 Evaluating the Performance of CLs	
	8.3	State of the Art in Theory and Modeling: Multiple Scales	. 395
	8.4	Structural Formation of Catalyst Layers and Effective Properties	. 398
		8.4.1 Molecular Dynamics Simulations	
		8.4.2 Atomistic MD Simulations of CLs	400
		8.4.3 Meso-scale Model of CL Microstructure Formation	.403

		8.4.4	Structure-related Effective Properties of CLs	407
	8.5.	Perfor	mance Modeling and Optimization Studies	
		8.5.1	General Framework of Performance Modeling	412
		8.5.2	Transport and Reaction in Catalyst Layers	415
		8.5.3	Spherical Agglomerates	418
		8.5.4	Main Results of the Macrohomogeneous Approach	425
		8.5.5	Water Management in CCLs	428
	8.6	Comr	parison and Evaluation of Catalyst Layer Designs	433
,		8.6.1	Conventional Catalyst Lavers	434
		. 8.6.2	Ultra-thin Two-phase Catalyst Lavers	434
	8.7	Summ	ary and Outlook.	438
	Refe	rences.		439
9	Cat	alvst Sv	nthesis Techniques	447
	Chr	istina B	cock. Helga Halvorsen and Barry MacDougall	
	9.1	Introd	uction	447
	9.2	Cataly	rsis Synthesis Methods	447
		9.2.1	Low-temperature Chemical Precipitation	448
		9.2.2	Colloidal	448
		9.2.3	Sol-gel	449
		9.2.4	Impregnation	450
		9.2.5	Microemulsions	451
		9.2.6	Electrochemical	453
		9.2.7	Sprav Pyrolysis	454
		9.2.8	Vapor Deposition	455
		9.2.9	High-energy Ball Milling	457
	9.3	Particl	le Size and Shape Control	458
	,	9.3.1	Mechanism for Size Control Using Colloidal	
		,	Synthesis Methods	460
		9.3.2	Size Control Using Electrochemical Methods	463
		9.3.3	Assistance of Templates and Template Preparation	463
		9.3.4	Shape Control	467
	9.4	Bi-me	tallic Catalysts	468
		9.4.1	Synthesis of Allov versus Two-phase Catalysts	468
		9.4.2	Sub-monolaver Deposition of Ad-metals	472
	9.5	Non-n	oble Metal Catalyst Synthesis	474
		9.5.1	Macrocyclic Complexes	474
		9.5.2	Methanol Tolerance and the Economics of these Catalysts	476
		9.5.3	Transition Metal Chalcogenides	477
		9.5.4	Conclusions	478
	Refe	rences		479
10	Phv	sical C	haracterization of Electrocatalysts	487
	Shii	ın Liao	. Baitao Li and Yingwei Li	
	10.1	. Introd	uction	487
	10.2	Analv	sis of Composition and Phase of Catalyst	488
		10.2.1	X-ray-Diffraction (XRD) and Electron Diffraction (ED)	488
			,	

	10.2.2 X-ray Fluorescence (XRF), X-ray Emission (XRE), and	
	Proton-induced X-ray Emission (PIXE)	
10.	3 Measurement of Physical Surface Area and Electrochemical Active	
	Surface Area	498
	10.3.1 BET Method and Physical Surface Area	498
	10.3.2 Electrochemical Hydrogen Adsorption/Desorption	499
	10.3.2 Typical Examples Analysis	501
10	4 Morphology of Catalysts and Their Active Components	505
10.	10.4.1. Soonning Electron Microscopy (SEM)	505
	10.4.2 Transmission Electron Microscopy (SEM)	
	10.4.2 Transmission Electron Microscopy;	
10	10.4.3 Typical Examples	
10.	5 The Structure and Crystallography of Surface and Small Active	
	Component Particles	
	10.5.1 Principles of Electron Spectroscopy for Chemical Analysis	
	(ESCA)?.	512
	10.5.2 X-ray Photoelectron Spectroscopy (XPS)	. 513
	10.5.3 UV-induced Photoelectron Spectroscopy (UVPS)	. 519
	10.5.4 Energy Dispersive Spectroscopy (EDS) and its Application	
10.	6 Analysis of the Stability of Catalysts by the Thermal Analysis	
	Method	
	10.6.1 Principles	525
	10.6.2 Application	526
	1063 Typical Examples of Analysis	527
10	7 Other Structural Techniques for Characterizing the Bulk and Surface	
10.	of Electrocatalysts	532
	10.7.1 FTIR and UV-VIS	532
	10.7.1 TTIK and $0.7.1$ TIK and $0.7.1$ TIK	534
10	Conclusion :	536
TU. Dof		526
Rei	erences	
44 11		- 1 -
	ectrochemical Methods for Catalyst Activity Evaluation	
Zhi	gang Qi	
11.	1 Electrochemical Cells;	547
	11.1.1 Introduction	547
	11.1.2 Conventional 3-Electrode Cells	548
	11.1.3 Half-cells	
	11.1.4 Single Cells^	
11.	2 Brief Principles of Electrochemical Instrumentation	
11,	3 Cyclic Voltammetry	
	11.3.1 Basic Principles	
	11.3.2 Potential Step Experiment	
	11.3.3 Instrumentation: Potentiostat	559
	11.3.4 Applications	560
11.	4 Rotating Disk and Rotating Ring-disk Electrode Techniques	567
11.	11.4.1 Theories and Principles	567
	11 / 2 Instrumentation	570
	11/13 Fual Call related Applications	570
	11.4.5 Tuel Cen-related Applications	

11.5 Electrochemical Impedance Spectroscopy	
11.5.1 Theories and Principles	
11.5.2 Instrumentation	
11.5.3 Application in Fuel Cells.	
11.6 Current Interruption and Current Pulse Techniques	
11.6.1 Principles and Instrumentation	585
11.6.2 Application in Fuel Cells	
11.7 Steady-state I-V Polarization	
11.7.1 Principles and Instrumentation	
11.7.2 Fuel CellHardware	
11.7.3 Fuel Cell Performance	
11.8 Durability Evaluation	
11.8.1 Introduction	
11.8.2 Techniques	
11.9 Summary*	602
List of Symbols	602
References	604
12 Combinatorial Methods for PEM Fuel Cell Electrocatalysts	609
Hansan Liu and Jiujun Zhang	
12.1 Introduction.	609
12.1.1 Combinatory Material Chemistry	609
12.1.2 Electrocatalysis in PEM Fuel Cells	611
12.2 Combinatorial Methods for Fuel Cell Electrocatalysis	612
¹ 12.2.1 Catalyst Library Preparation	612
12.2.2 Catalyst Activity Down-selection	617
12.3 Combinatorial Discoveries of Fuel Cell Electrocatalysts	
12.3.1 Low/Non-platinum Content Catalysts for PEM Fuel Cell	
Cathodes	
12.3.2 CO-tolerant Catalysts for PEM Fuel Cell Anodes	
12.3.3 Platinum Alloy Catalysts for Direct Methanol Fuel Cell	
Anodes	
12.3.4 Methanol-tolerant Catalysts for Direct Methanol Fuel Cell	
Cathodes	627
12.4 Conclusions	
References	629
	(21
13 Platinum-based Alloy Catalysis for PENI Fuel Cells	
12.1 Introduction	621
12.2 Dt based Aller: Catabasta for DEM Evel Call Cathedes	031
13.2 Pt-based Alloy Catalysis for PEM Fuel Cell Cathodes	032
13.2.1 The Alloying Effect on Cathode Catalyst Activity	
12.2.2. Stability of Dt based Alley Cathola Catalysts	033
12.2. Dt haard Allow Catalysts for DMEC Angles	
13.5 PI-Dased Alloy Catalysts for DIVIFC Anodes.	
12.2.2 Mashanian of the Allo in Difference Angele Citation	
15.5.2 Mechanism of the Alloying Effect on Anode Catalysts	

		13.3.3 The Stability of Pt-based Alloy Anode Catalysts	<u>.</u> 649
	13.4	Concluding Remarks	.650
	Refe	rences	.651
14	Nan Xueli	otubes, Nanofibers and Nanowires as Supports for Catalysts iang Sun and Madhu Sudan Saha	.655
	14.1	Introduction	.655
		14.1.1 The Importance of Combining Nanotechnology and Clean	655
		14.1.2 One-dimensional Nanomaterials Based New Catalyst	656
	14.2	Synthesis and Characterization of Carbon Nanotubes Nanofibers	.050
	14.2	and Nanowires	657
		14.2.1 Structure and Synthesis Methods for Carbon Nanotubes	657
		14.2.1 Structure and Synthesis Methods for Carbon Nanofibers	661
		14.2.2 Structure and Synthesis Methods for Vanoniras	661
	142	14.2.5 Structure and Symplesis Methods for Nanowires	.001
	14.3	Synthesis and Characterization of Pt Catalysis Supported on	((5
		Carbon Nanotubes, Carbon Nanotibers and Metal Oxide Nanowires	003
		14.3.1 Introduction	.005
		14.3.2 Methods for Depositing Pt Catalysts on Carbon Nanotubes (Pt/CNTs)	.666
		14.3.3 Methods for Depositing Pt Catalysts on Carbon Nanofibers (Pt/CNFs)	.682
		14.3.4 Methods for Depositing Pt Catalysts on Metal Oxide Nanowires (Pt/NWs);	.684
		14.3.5 Methods of Functionalizing of Carbon Nanotubes and	
		Nanofibers-basedFuel Cell Electrodes	.687
	14.4	Activity Validation of the Synthesized Catalysts in a Fuel Cell	
		Operation	.693
		14.4.1 Fabrication of Membrane Electrode Assembly for Carbon Nanotubes and Nanofibers-based Catalysts	693
		14.4.2 Performance of Carbon Nanotubes and Nanofibers Membrane	.070
		Flectrode Assembly	697
	14 5	Stability of Carbon Nanotubes and Nanofibers-based Fuel Cell	.077
	11.0	Electrodes	700
	146	Conclusions and Future Perspective	702
	Refer	rences	704
	Refer	,,	.704
15	Non	nable Electropotalysts for the DEM Eyel Call Owygan	
15	Dodu	-noble Electrocatalysis for the r Elvi Fuer Cell Oxygen	715
	<i>V</i> uno	shan Lee Lei Thang and livium Thang	./13
	15 1	num Lee, Let Znung und Jujun Znung	715
	15.1	Introduction	710
	15.2.	15.2.1. The Control Transition Metal D ^(C)	./10
		15.2.1. The Central Transition Metal Effect.	/1/
		15.2.2. The Ligand Effect	./19
		15.2.3. The Heat-treatment Effect	720
		15.2.4. The Effect of the Synthesis Method	721

	15.3 Non-noble Transition Metal Carbides and Nitrides for the ORR	.725
	15.3.1 Carbides	.725
	.15.3.2 Nitrides	728
	15.3.3 Oxynitrides	.730
	15.3.4 Carbonitrides	.733
	15.4 Transition Metal Chalcogenides for the ORR	.734
	15.5 Metal Oxides for the ORR	742
	15.6 Conclusions	748
]	References	748
16	CO-tolerant Catalysts	.759
	SiyuYe	
	16.1 Introduction.	.759
	16.2 Mechanisms of CO Tolerance. [^]	.764
	16.2.1 Electrochemistry of Carbon Monoxide and Hydrogen	.766
	16.2.2 Characteristics of PEMFC CO Poisoning	.770
	16.2.3 Bifunctional Mechanism of CO Tolerance	.771
	16.2.4 Direct Mechanism of CO Tolerance (Ligand or Electronic	
	Effect)	.773
	16.2.5 Surface Science Study and Modeling of CO-tolerance	
	Mechanism	774
	16.3 Development of CO-tolerant Catalysts	781
	16.3.1 PtRu Binary System	.783
	16.3.2 PtMo Binary System	787
	16.3.3 PtSn Binary System	.790
	16.3.4 PtM (M = Fe, Co, Ni, Ta, Rh, Pd) Binary Systems	791
	16.3.5 PtRuM (M = Mo, Sn, W, Cr, Zr, Nb, Ag, Au, Rh, Os, and Ta)	
	Ternary Systems	794
	1636 The Pt PtRu-MO ₂ ($M = Mo_1 W$ and V) System	796
	1637 Ru-modified Pt Catalysts and Pt-modified Ru Catalysts	799
	16.3.8 PtRu on Functionalized Carbon and Carbon Nanotube	,
	Systems	802
	16.2.0 Dt Au Binery System	<u>804</u>
	16.2.10 Dt free Systems	204
	164 Propagation of CO tologent Catalysts	.004 905
	165 Canalusiana	.003
1	10.5 Conclusions	.809
]	Keferences.	811
17	Reversal-tolerant Catalyst Layers	.835
	Sivu Ye	
	17.1 Introduction	.835
	17.2 Cell Voltage Reversal	.838
	17.2.1 Air Starvation	838
	17.2.2 Fuel Starvation	839
	17.2.3 Electrocatalyst Degradation in PEM Fuel Cells Caused by Cell	
	Voltage Reversal During Fuel Starvation	842
	17.3 Development of Reversal-tolerant Catalyst Lavers	845
	1	

	17.3.1 Reversal Tolerance Cathode Catalyst Layer	846
	17.3.2 Reversal Tolerance Anode Catalyst Layer:;	847
	17.4 Conclusions	
	References	
18	High-temperature PEM Fuel Cell Catalysts and Catalyst Layers	.861
	Chaojie Song, Rob Hui and Jiujun Zhang	
	18.1 Opportunities and Challenges for High-temperature PEM Fuel Cells	. 861
	18.1.1 Advantages of High-temperature PEM Fuel Cells,;	.861
	18.1.2 Routes to Increase the Operating Temperature	.867
	18.1.3 Challenges of Catalysts/Catalyst Layers	.867
	18.2 Catalysts for High-temperature PEM Fuel Cells	.868
	18.2.1 Current Research Activities	.868
	18.2.2 Degradation of Catalysts at High Temperatures	869
	18.2.3 Catalyst Support Strategy to Improve High-temperature	
	Catalysts/Catalyst Lavers	876
	1824 High-temperature Catalyst Layers - Components and	
	Structure	877
	1825 Strategies for HT Catalyst/Catalyst Laver Performance	
	Improvement and Mitigation	878
	1826 Suggestions for Future Work	878
	18.2.7 Typical Example Analysis	878
	18.3 Summary	88/
	References ·	88/
	references.	
19	Conventional Catalyst Ink. Catalyst Layer and MEA Preparation	889
19	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation	. 889
19	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation <i>Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang</i> 19.1 Introduction	.889
19	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang 19.1 Introduction	. <u>.</u> 889 889 889
19	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang 19.1 Introduction 19.2 Principles of Gas Diffusion Electrodes and MEA Structure 19.3 Cotalyst Layor	
19	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang 19.1 Introduction 19.2 Principles of Gas Diffusion Electrodes and MEA Structure 19.3 Catalyst Layer 10.3 1 Propagation of Catalyst Lake	
19	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation <i>Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang</i> 19.1 Introduction 19.2 Principles of Gas Diffusion Electrodes and MEA Structure 19.3 Catalyst Layer 19.3.1 Preparation of Catalyst Ink 10.3.2 Preparation of Catalyst Ink	. 889 . 889 . 889 . 893 . 893 . 893
19	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation <i>Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang</i> 19.1 Introduction. 19.2 Principles of Gas Diffusion Electrodes and MEA Structure. 19.3 Catalyst Layer 19.3.1 Preparation of Catalyst Ink. 19.3.2 Preparation of the Catalyst Layer. 10.4 Demonstration of the MEA	. 889 . 889 . 889 . 893 . 893 . 893 . 895
19	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation <i>Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang</i> 19.1 Introduction. 19.2 Principles of Gas Diffusion Electrodes and MEA Structure. 19.3 Catalyst Layer 19.3.1 Preparation of Catalyst Ink. 19.3.2 Preparation of the Catalyst Layer. 19.4 Preparation of the MEA.	. 889 . 889 . 889 . 893 . 893 . 893 . 893 . 895 . 911
19	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation <i>Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang</i> 19.1 Introduction. 19.2 Principles of Gas Diffusion Electrodes and MEA Structure. 19.3 Catalyst Layer. 19.3.1 Preparation of Catalyst Ink. 19.3.2 Preparation of the Catalyst Layer. 19.4 Preparation of the MEA. 19.5 Summary and Outlook.	. 889 .889 .893 .893 .893 .895 .911 .911
19	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang 19.1 Introduction. 19.2 Principles of Gas Diffusion Electrodes and MEA Structure. 19.3 Catalyst Layer 19.3.1 Preparation of Catalyst Ink. 19.3.2 Preparation of the Catalyst Layer. 19.4 Preparation of the MEA. 19.5 Summary and Outlook. References	. 889 . 889 . 893 . 893 . 893 . 895 . 911 . 911
19	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation <i>Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang</i> 19.1 Introduction 19.2 Principles of Gas Diffusion Electrodes and MEA Structure 19.3 Catalyst Layer 19.3.1 Preparation of Catalyst Ink 19.3.2 Preparation of the Catalyst Layer 19.4 Preparation of the MEA. 19.5 Summary and Outlook References	. 889 .889 .893 .893 .893 .895 .911 .911 .912
19 20	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang 19.1 Introduction	. 889 . 889 . 889 . 893 . 893 . 893 . 911 . 911 . 912
19 20	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang 19.1 Introduction 19.2 Principles of Gas Diffusion Electrodes and MEA Structure 19.3 Catalyst Layer 19.3.1 Preparation of Catalyst Ink 19.3.2 Preparation of the Catalyst Layer 19.4 Preparation of the MEA 19.5 Summary and Outlook. References Spray-based and CVD Processes for Synthesis of Fuel Cell Catalysts and Thin Catalyst Layers Badamba Maria	889 889 893 893 893 893 911 911 912
19 20	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang 19.1 Introduction. 19.2 Principles of Gas Diffusion Electrodes and MEA Structure. 19.3 Catalyst Layer 19.3.1 Preparation of Catalyst Ink. 19.3.2 Preparation of the Catalyst Layer. 19.4 Preparation of the MEA. 19.5 Summary and Outlook. References. Spray-based and CVD Processes for Synthesis of Fuel Cell Catalysts and Thin Catalyst Layers. Radenka Marie	. 889 .889 .893 .893 .893 .895 .911 .911 .912 .917
19 20	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang 19.1 Introduction. 19.2 Principles of Gas Diffusion Electrodes and MEA Structure 19.3 Catalyst Layer 19.3.1 Preparation of Catalyst Ink. 19.3.2 Preparation of the Catalyst Layer. 19.4 Preparation of the MEA. 19.5 Summary and Outlook. References. Spray-based and CVD Processes for Synthesis of Fuel Cell Catalysts and Thin Catalyst Layers. Radenka Marie 20.1 Introduction.	. 889 .889 .893 .893 .893 .911 .911 .912 .917 .917
19 20	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang 19.1 Introduction. 19.2 Principles of Gas Diffusion Electrodes and MEA Structure. 19.3 Catalyst Layer. 19.3.1 Preparation of Catalyst Ink. 19.3.2 Preparation of the Catalyst Layer. 19.4 Preparation of the MEA. 19.5 Summary and Outlook. References. Spray-based and CVD Processes for Synthesis of Fuel Cell Catalysts and Thin Catalyst Layers. Radenka Marie 20.1 Introduction. 20.2 Spray Pyrolysis Approach.	. 889 .889 .893 .893 .893 .911 .911 .912 .917 .917 .919
19 20	 Conventional Catalyst Ink, Catalyst Layer and MEA Preparation	. 889 .889 .893 .893 .911 .911 .912 .917 .919 .919
19 20	 Conventional Catalyst Ink, Catalyst Layer and MEA Preparation	. 889 .889 .893 .893 .893 .911 .911 .912 .917 .919 .919
19 20	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang 19.1 Introduction. 19.2 Principles of Gas Diffusion Electrodes and MEA Structure. 19.3 Catalyst Layer. 19.3.1 Preparation of Catalyst Ink. 19.3.2 Preparation of the Catalyst Layer. 19.4 Preparation of the MEA. 19.5 Summary and Outlook. References. Spray-based and CVD Processes for Synthesis of Fuel Cell Catalysts and Thin Catalyst Layers. Radenka Marie 20.1 Introduction. 20.2 Spray Pyrolysis Approach. 20.2.1 Current Research Activities. 20.2.2 Spray Conversion and Aerosol Routes for Powder Manufacturing.	. 889 .889 .893 .893 .893 .911 .911 .912 .917 .917 .919 .919
19 20	 Conventional Catalyst Ink, Catalyst Layer and MEA Preparation	. 889 .889 .893 .893 .893 .911 .911 .911 .912 .917 .917 .919 .919 .919
19 20	 Conventional Catalyst Ink, Catalyst Layer and MEA Preparation. Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang 19.1 Introduction. 19.2 Principles of Gas Diffusion Electrodes and MEA Structure. 19.3 Catalyst Layer	. 889 .889 .893 .893 .893 .911 .911 .912 .917 .917 .919 .919 .919 .921 .922

	20.2.6 Electrocatalytic Activity and Stability of Pt-based Catalysts	
	20.2.7 Typical Example Analysis	
	20.3 Deposition of Catalyst Layer by CVD	929
	20.3.1 Current Research Activities	
	20.3.2 Film Formation from Vapor Phase by CVD	931
	20.3.3 Morphological and Microstructural Stability	933
	20.3.4 Electrochemical Performance and Catalytic Activity	935
	20.3.5 Typical Examples Analysis	939
	20.4 Flame-based Processing	941
	20.4.1 Current Research Activities	
	20.4.2 Atomization Process	
	20.4.3 Particle Formation in the Flame	
	20.4.4 Particle Size Control	
	20.4.5 Electrochemical Performance and Catalytic Activity of the	
	Flame Deposited Catalyst	
	20.4.6 Typical Examples Analysis	954
	20.5 Summary	
	References	958
21	Catalyst Layer/MEA Performance Evaluation	
	Jianlu Zhang and Jiujun Zhang	
	21.1 Introduction	
	21.2 Theoretical Analysis.	966
	. 21.2.1 Open Circuit Voltage (OCV) of the PEMFC	
	$^{\circ}$ 21.2.2 Exchange Current Density, $_{10}$	968
	21.2.3 Tatel Slope, b	
	21.2.4 Polarization Curve Analysis	9/1
	21.3 Physical Chemistry Evaluation of Catalyst Layer	9/3
	21.3.1 Pore Structure Analysis of Catalyst Layer	
	21.5.2 Protonic and Electronic Conductivity in the Catalyst Layer	. 974
	21.5.5 Wettablinty of the Catalyst Layer	975
	21.4 Catalysi Layer Evaluation in a Han-cen	978
	21.4.1 Kolating Disk Electrode (KDE) Test	970
	21.4.2 Cyclic Voltammetry (CV) Test	
	21.4.5 Totalization Curves in a Han-cen	086
	21.5 MEA Evaluation by the Single-cent rest.	986
•	21.5.1 Test Station	980
	21.5.2 For α rest ΔC Impedance Test	988
	21.5.5 Resistance Pest-Ac Impedance Pest	997
	21.6. Lifetime/Durability Testing of the MEA	
	21.6.1 Mechanisms of MEA Degradation	994
	21.6.2 Durability Testing	996
	21.7 Conclusions	997
	References	997
		///

22	Cata	lyst Layer Composition Optimization	1003
	Wei	Xing	
	22.1	Catalyst Layer Materials Selection and Evaluation	. 1003
		22.1.1 Catalyst selection	1003
		22.1.2 Gas Diffusion Layer (GDL) and Microporous Layer (MPL)	
		Materials Selection	1011
	22.2	Fabrication Optimization Processes for the Catalyst Laver	
		ofMEAs	
		22.2.1 GDL Substrate Preparation	1016
		22.2.2 Microporous Laver (MPL) Preparation and Optimization	. 1017
		22.2.3 Catalyst Ink Composition and Preparation	1019
		22.2.4 Carbon-supported Catalyst Layer Fabrication	1023
		22.2.5 Pt Catalyst Laver Fabrication	1027
		22.2.6 MEA Fabrication and Optimization	1029
	22.3	MEA Performance Verification with its Catalyst Laver Fabrication	
		Optimization Process	1031
		22.3.1 MEA Performance Characterization	1031
		22.3.2 MEA Water Management Characterization	1032
		22.3.3 MEA CO and Other Contamination Tolerance	1032
		22.3.4 MEA Lifetime Enhancement via MEA Fabrication Process	
		Improvement	1033
	Refe	rences	1033
23	Cata	lyst Laver Degradation, Diagnosis and Failure Mitigation	.1041
	Jing	Li	
	23.1	Introduction	. 1041
	23.2	Diagnosis of Catalyst Layer Degradation: Fuel Cell Failure	
		Analysis	1044
		23.2.1 Diagnostic Tools to Identify Catalyst Degradation During	
		Fuel Cell Operation: Electrochemical Methods	1045
		23.2.2 Ex situ Tools for Characterization of Catalyst Degradation	
		During Fuel Cell Operation	1049
		23.2.3 Durability and Accelerated Stress Testing	1054
	23.3	Anode Catalyst Layer Degradation	1056
	-0.0	23.3.1 Anode Catalyst Layer Degradation Caused by	
		Contamination r	1056
		23.3.2 Anode Catalyst Layer Degradation-Voltage Reversal :	1061
		23.3.2 Rul Leaching and Crossover	1064
	23.4	Cathode Catalyst Layer Degradation	1066
	23.4	23.4.1 Platinum Dissolution During Fuel Cell Operation	1066
		23.4.2 Pt Accumulation and Distribution in the Membrane after	1000
		Fuel Cell Operation	1073
		23.4.3 Loss of Platinum Surface Area Due to Agalomeration	1075
		23.4.4 Carbon Corrosion of Catalyst Layer	1080
	22 5	Summary	1087
	25.5 Refe	rences "	1080
	NUIC	••	

Acronyms and Abbreviations	
Contributor Biographies	
Author Index	1117
Subject Index	