Introductory Econometrics for Finance

Chris Brooks
The ISMA Centre, University of Reading
Contents

List of figures xii
List of tables xv
List of boxes xviii
List of screenshots xx
Preface xxi
Acknowledgements xxv

1 Introduction 1
1.1 What is econometrics? 1
1.2 Is financial econometrics different from 'economic econometrics'? Some stylised characteristics of financial data 2
1.3 Types of data 4
1.4 Returns in financial modelling 6
1.5 Steps involved in formulating an econometric model 8
1.6 Some points to consider when reading articles in the empirical financial literature 10
1.7 Outline of the remainder of this book 11

2 Econometric packages for modelling financial data 15
2.1 What packages are available? 15
2.2 Choosing a package 16
2.3 Accomplishing simple tasks using the two packages 17
2.4 WinRATS 18
2.5 EViews 31
2.6 Further reading 39
Appendix: economic software package suppliers 40

3 A brief overview of the classical linear regression model 42
3.1 What is a regression model? 42
3.2 Regression versus correlation 43
3.3 Simple regression
3.4 Some further terminology
3.5 The assumptions underlying the classical linear regression model
3.6 Properties of the OLS estimator
3.7 Precision and standard errors
3.8 An introduction to statistical inference
3.9 Generalising the simple model to multiple linear regression
3.10 The constant term
3.11 How are the parameters (the elements of the \(\beta \) vector) calculated in the generalised case?
3.12 A special type of hypothesis test: the t-ratio
3.13 Data mining and the true size of the test
3.14 An example of the use of a simple t-test to test a theory in finance: can US mutual funds beat the market?
3.15 Can UK unit trust managers beat the market?
3.16 The overreaction hypothesis and the UK stock market
3.17 Testing multiple hypotheses: the F-test
3.18 Sample EViews and RATS instructions and output for simple linear regression
Appendix: mathematical derivations of CLRM results
3A.1 Deriving the OLS coefficient estimator in the bivariate case
3A.2 Derivation of the OLS standard error estimators for the intercept and slope in the bivariate case
3A.3 Derivation of the OLS coefficient estimator in the multiple regression context
3A.4 Derivation of the OLS standard error estimator in the multiple regression context

4 Further issues with the classical linear regression model
4.1 Goodness of fit statistics
4.2 Hedonic pricing models
4.3 Tests of non-nested hypotheses
4.4 Violations of the assumptions of the classical linear regression model
4.5 Assumption 1: \(E(u_i) = 0 \)
4.6 Assumption 2: \(var(u_i) = \sigma^2 < \infty \)
4.7 Assumption 3: \(cov(U_j, U_j) = 0 \) for \(i \neq j \)
4.8 Assumption 4: the \(x_i \) are non-stochastic
4.9 Assumption 5: the disturbances are normally distributed 178
4.10 Multicollinearity 190
4.11 Adopting the wrong functional form 194
4.12 Omission of an important variable 197
4.13 Inclusion of an irrelevant variable 198
4.14 Parameter stability tests 198
4.15 A strategy for constructing econometric models and a discussion of model-building philosophies 208
4.16 Determinants of sovereign credit ratings 211
Appendix: a brief introduction to principal components analysis 220
4A.1 An application of principal components to interest rates 222
4A.2 Calculating principal components in practice 225

5 Univariate time series modelling and forecasting 229
5.1 Introduction 229
5.2 Some notation and concepts 230
5.3 Moving average processes 235
5.4 Autoregressive processes 239
5.5 The partial autocorrelation function 247
5.6 ARMA processes 249
5.7 Building ARMA models: the Box-Jenkins approach 255
5.8 Example: constructing ARMA models in EViews 258
5.9 Estimating ARMA models with RATS 268
5.10 Examples of time series modelling in finance 272
5.11 Exponential smoothing 275
5.12 Forecasting in econometrics 277
5.13 Forecasting using ARMA models in EViews 291
5.14 Forecasting using ARMA models in RATS 293
5.15 Estimating exponential smoothing models using EViews and RATS 295

6 Multivariate models 302
6.1 Motivations 302
6.2 Simultaneous equations bias 304
6.3 So how can simultaneous equations models be validly estimated? 306
6.4 Can the original coefficients be retrieved from the 7ns? 306
6.5 Simultaneous equations in finance 309
6.6 A definition of exogeneity 310
6.7 A special case: a set of equations that looks like a simultaneous equations system, but isn't 313
6.8 Estimation procedures for simultaneous equations systems 313
6.9 An application of a simultaneous equations approach in finance: modelling bid-ask spreads and trading activity in the S&P 100 index options market 317
6.10 Simultaneous equations modelling using EViews and RATS 323
6.11 A Hausman test in RATS 328
6.12 Vector autoregressive models 330
6.13 Does the VAR include contemporaneous terms? 336
6.14 Block significance and causality tests 338
6.15 VARs with exogenous variables 340
6.16 Impulse responses and variance decompositions 340
6.17 An example of the use of VAR models: the interaction between property returns and the macroeconomy 343
6.18 VAR estimation in RATS and EViews 351

7 Modelling long-run relationships in finance 367
7.1 Stationarity and unit root testing 367
7.2 Testing for unit roots in EViews 383
7.3 Testing for unit roots in RATS 386
7.4 Cointegration 387
7.5 Equilibrium correction or error correction models 389
7.6 Testing for cointegration in regression: a residuals-based approach 391
7.7 Methods of parameter estimation in cointegrated systems 393
7.8 Lead-lag and long-term relationships between spot and futures markets 395
7.9 Testing for and estimating cointegrating systems using the Johansen technique based on VARs 403
7.10 Purchasing power parity 409
7.11 Cointegration between international bond markets 411
7.12 Testing the expectations hypothesis of the term structure of interest rates 418
7.13 Testing for cointegration and modelling cointegrated systems using EViews and RATS 420

8 Modelling volatility and correlation 437
8.1 Motivations: an excursion into non-linearity land 437
8.2 Models for volatility 441
8.3 Historical volatility 441
8.4 Implied volatility models 442
8.5 Exponentially weighted moving average models 442
8.6 Autoregressive volatility models 444
8.7 Autoregressive conditionally heteroscedastic (ARCH) models 445
8.8 Generalised ARCH (GARCH) models 452
8.9 Estimation of ARCH/GARCH models 455
8.10 Extensions to the basic GARCH model 468
8.11 Asymmetric GARCH models 469
8.12 The GJR model 469
8.13 The EGARCH model 470
8.14 GJR and EGARCH in EViews 471
8.15 Estimating GJR and EGARCH models using RATS 472
8.16 Tests for asymmetries in volatility 474
8.17 GARCH-in-mean 480
8.18 Uses of GARCH-type models including volatility forecasting 482
8.19 Testing non-linear restrictions or testing hypotheses about non-linear models 490
8.20 Volatility forecasting: some examples and results from the literature 493
8.21 Stochastic volatility models revisited 501
8.22 Forecasting covariances and correlations 502
8.23 Covariance modelling and forecasting in finance: examples of model uses 503
8.24 Historical covariance and correlation 505
8.25 Implied covariance models 505
8.26 Exponentially weighted moving average models for covariances 506
8.27 Multivariate GARCH models 506
8.28 A multivariate GARCH model for the CAPM with time-varying covariances 510
8.29 Estimating a time-varying hedge ratio for FTSE stock index returns 512
8.30 Estimating multivariate GARCH models using RATS and EViews 516
Appendix: parameter estimation using maximum likelihood 526

9 Switching models 533
9.1 Motivations 533
9.2 Seasonalities in financial markets: introduction and literature review 536