
Michael Sterner Ingo Stadler (Hrsg.)

Energiespeicher – Bedarf, Technologien, Integration

2. korrigierte und ergänzte Auflage

Inhaltsverzeichnis

Teil I Bedeutung und Einordnung von Speichern in der Energieversorgung

1	Energiespeicher im Wandel der Zeit	3
	Prof. DrIng. Michael Sterner (FENES OTH Regensburg)	
1.1	100% erneuerbare Energie vor der industriellen Revolution	5
1.1.1	Photosynthese – Kernprozess der natürlichen Energiespeicherung	5
1.1.2	Holz, Torf, Energiepflanzen – Nutzung der gespeicherten Solarenergie	10
1.2	Fossile Energie im fossilen Zeitalter	15
1.2.1	Entstehung fossiler Energie	15
1.2.2	Nutzung und Emissionen fossiler Energie: Status quo	17
1.3	Übergang und Rückführung zum Zeitalter der erneuerbaren Energien	17
1.3.1	Klimawandel und Ressourcenknappheit – Treiber der globalen Energiewende	17
1.3.2	Das Zeitalter der erneuerbaren Energien als verbleibende Frage der Zeit – Szenarien zur	
	Wende	20
1.4	Zusammenfassung	23
	Literatur	23
2	Definition und Klassifizierung von Energiespeichern	25
	Prof. DrIng. Michael Sterner (FENES OTH Regensburg)	
	Franz Bauer (FENES OTH Regensburg): Abschnitte 2.1, 2.2, 2.3, 2.4	
2.1	Definition und Anwendung	26
2.2	Nutzen von Speichern	31
2.3	Klassifizierung von Speichern	36
2.3.1	Physikalisch-energetische Klassifizierung	36
2.3.2	Definition und Berechnung der wichtigsten Größen	38
2.3.3	Zeitliche Klassifizierung	44
2.3.4	Räumliche Klassifizierung	45
2.3.5	Ökonomische Klassifizierung	46
2.4	Zusammenfassung	47
	Literatur	49
Teil	II Bedarf an Energiespeicherung	
3	Speicherbedarf in der Stromversorgung	53
	Prof. DrIng. Michael Sterner (FENES OTH Regensburg)	
	Dr. Christopher Breuer (Westnetz GmbH): Abschnitt 3.6	
	Tim Drees (IAEW RWTH Aachen): Abschnitte 3.5, 3.6	
	Fabian Eckert (FENES OTH Regensburg), Abschnitte 3.2., 3.3, 3.6, 3.7	
	Andreas Maaz (IAEW RWTH Aachen): Abschnitt 3.5	
	Carsten Pape (Fraunhofer IWES): Abschnitt 3.5	
	Dr. Niklas Rotering (IAEW RWTH Aachen): Abschnitt 3.4	
	Martin Thema (FENES OTH Regensburg): Abschnitte 3.7, 3.8	

3.1	Speicherbedarf und Überschüsse – Einflussfaktoren und Definitionen	5 6
3.1.1	Grundsätzliche Einflüsse auf den Speicherbedarf	56
3.1.2	Definition Speicherbedarf	57
3.1.3	Unterscheidung marktbasierter und netzbasierter Stromüberschuss	58
3.2	Langfristszenarien des Bundesumweltministeriums	59
3.2.1	Entwicklung des Primär-, End- und Nutzenergiebedarfs	59
3.2.2	Entwicklung des Strommix	62
3.2.3	Auswirkung von Mindesterzeugung und Import/Export auf den Speicherbedarf	65
3.2.4	Auswirkung von Lastmanagement auf den Speicherbedarf	67
3.2.5	Speichereinsatz bei erneuerbaren Anteilen von 40 %, 63 % und 85 %	69
3.2.6	Zusammenfassung	71
3.3	»100 % Strom aus erneuerbaren Quellen« laut Umweltbundesamt	72
3.3.1	Annahmen zum Stromverbrauch in 2050	72
3.3.2	Technisch-ökologische Potenziale von erneuerbaren Energien, Speichern und	
	Lastmanagement	74
3.3.3	Annahmen und Modellierung des Szenarios für 2050	78
3.3.4	Ergebnisse zu Speicherbedarf und Versorgungssicherheit	80
3.3.5	Zusammenfassung	88
3.4	VDE-ETG-Studie zum marktbasierten Speicherbedarf	89
3.4.1	Methodik	90
3.4.2	Annahmen der Modellbildung und Eingangsdaten	92
3.4.3	Szenarien-übergreifende Erkenntnisse	94
3.4.4	Erkenntnisse aus dem 40%-Szenario	96
3.4.5	Erkenntnisse aus dem 80 %-Szenario	97
3.4.6	Erkenntnisse aus dem 100 %-Szenario	100
3.4.7	Zusammenfassung	100
3.5	Studie »Roadmap Speicher« zum Speicherbedarf Deutschlands	
	im europäischen Kontext	101
3.5.1	Methodisches Vorgehen	102
3.5.2	Szenario	104
3.5.3	Mittelfristige Speichersimulation	108
3.5.4	Langfristige Speichersimulation	111
3.5.5	Wesentliche Erkenntnisse / Zusammenfassung	113
3.6	Untersuchungen zum netzbasierten Speicherbedarf	114
3.6.1	Methodisches Vorgehen zur Unterscheidung von markt- und	
	netzbasiertem Speicherbedarf	114
3.6.2	Fallstudie Power-to-Gas in Deutschland im Jahr 2022 bei verzögertem Netzausbau	114
3.6.3	Minimaler Speicherbedarf im europäischen Netzverbund	117
3.6.4	Zusammenfassung	118
3.7	Gegenüberstellung und Einordnung der Ergebnisse	119
3.7.1	Gegenüberstellung der Ergebnisse der drei Studien	119
3.7.2	Einordnung der Ergebnisse im Vergleich zu weiteren Studien	119
3.8	Zusammenfassung	135
	Literatur	138

4 Speicherbedarf in der Wärmeversorgung	141
4.1 Grundlagen und Ziele	143
4.2 Entwicklung des Wärmebedarfs	143
4.3 Entwicklung des Wärmemix	144
4.3.1 Fossile Wärmebereitstellung	144
4.3.2 Erneuerbare Wärmebereitstellung	144
4.4 Transformation des Wärmesektors	145
4.4.1 Haushalte	146
4.4.2 Gewerbe, Handel und Dienstleistungen	147
4.4.3 Industrie	148
4.5 Paradigmenwechsel im Wärmesektor	149
4.5.1 Beispiel Wandel Erdöl – Erdgas – erneuerbare Energien	150
4.5.2 Strom als Primärenergie	150
4.6 Speicherbedarf in einem Klimazielszenario für das Energiesystem	
Deutschland im Jahr 2050	15 1
4.6.1 Szenariorahmen, Modell und Annahmen	15 1
4.6.2 Ergebnisse zum Speichereinsatz im Wärmebereich	152
4.7 Überschüsse, Speicherbedarf und Speicherpotenziale	155
4.7.1 Überschüsse im Wärmesektor	155
4.7.2 Entwicklung des Speicherbedarfs	157
4.7.3 Speicherpotenziale	15 9
4.8 Zusammenfassung	165
Literatur	167
5 Speicherbedarf im Verkehrs- und Chemiesektor	169
Prof. DrIng. Michael Sterner (FENES OTH Regensburg)	
Fabian Eckert (FENES OTH Regensburg): Abschnitte 5.3, 5.5, 5.6	
Prof. Dr. Hans-Martin Henning (Fraunhofer ISE): Abschnitt 5.5	
Tobias Trost (Fraunhofer IWES): Abschnitte 5.2, 5.4	
5.1 Grundlagen und Ziele im Verkehrssektor	171
5.1.1 Ausgangslage und Entwicklung der letzten Jahrzehnte	171
5.1.2 Zielsetzungen im Verkehrssektor	17 1
5.2 Entwicklung des Mobilitätsbedarfs	172
5.2.1 Entwicklung der Bevölkerung	173
5.2.2 Entwicklung der Wirtschaftsleistung	173
5.2.3 Bandbreite der Entwicklung des Bedarfs in Personen- und Güterverkehr	173
5.3 Entwicklung der Energie- und Kraftstoffversorgung	173
5.3.1 Entwicklung im Personenverkehr	173
5.3.2 Entwicklung im Güterverkehr	
=	
5.3.3 Entwicklung des Energiemix im Verkehrssektor	170
5.3.3 Entwicklung des Energiemix im Verkehrssektor	
	178

		100
5.5	Speicherbedarf im Verkehrssektor	182
5.5.1	Heutiger Speicherbedarf	182
5.5.2	Speicherbedarf in einem zu 50% erneuerbar versorgten Mobilitätssektor	183
5.5.3	Speicherbedarf in der Studie des Fraunhofer ISE	184
5.5.4	Speicherstudie für die Agora Energiewende	185
5.6	Speicherbedarf in der chemischen Industrie	186
5.6.1	Rohstoffverbrauch heute und im Jahr 2050	187
5.6.2	Benötigte Power-to-X-Leistung für die chemische Industrie	188
5.7	Zusammenfassung	188
	Literatur	191
Teil II	II Technologien der Energiespeicherung	
6	Elektrische Energiespeicher	195
	Prof. Dr. Ingo Stadler (CIRE TH Köln)	
6.1	Kondensatoren – Supercaps	197
6.1.1	Grundlagen eines Kondensators	197
6.1.2	Vom Kondensator zum Doppelschichtkondensator	200
6.1.3	Ladung und Entladung	203
6.1.4	Verluste, Wirkungsgrad und weitere Kennwerte	209
6.1.5	Lebensdauer	213
6.1.6	Anwendungsgebiete	216
6.2	Supraleitfähige elektromagnetische Energiespeicher	217
6.2.1	Grundlagen der Supraleitung	218
6.2.2	Supraleitfähiger elektromagnetischer Energiespeicher	219
6.3	Zusammenfassung	225
0.3	Literatur	227
7	Elektrochemische Energiespeicher	229
	Prof. Dr. Ingo Stadler (CIRE TH Köln)	
	Dr. Bernhard Riegel (Hoppecke Batterien): Abschnitt 7.6	
	Dr. Detlef Ohms (Hoppecke Batterien): Abschnitte 7.1, 7.3	
	Dr. Eduardo Cattaneo (Hoppecke Batterien): Abschnitt 7.6	
	Dr. Götz Langer (Hoppecke Batterien): Abschnitt 7.2	
	Dr. Matthias Herrmann (Hoppecke Batterien): Abschnitt 7.4	
7.1	Grundlagen	232
7.1.1	Physikalische Grundzusammenhänge	232
7.1.2	Potenzialausbildung an Elektroden	233
7.1.3	Elektrodengleichgewicht	235
7.1.4	Nernst'sche Gleichung	235
7.1.5	Elektrochemische Umsätze an Elektroden	237
7.1.6	Elektrochemische Zellen und Zellreaktionen	237
7.1.7	Elektroden- und Zellpolarisation	239
7.1.8	Nebenreaktionen	241
7.1.9	Energie- und Wirkungsgradbetrachtungen	241
7.1.10	Typen elektrochemischer Energiespeicher und -wandler	242
7.1.11	Elektrolyte	243
7.1.12	Bauformen von Zellen	244
7.1.13	Kenngrößen von Energiespeichern	244
-		

7.2	Blei-Säure-Batterien	247
7.2.1	Aufbau	247
7.2.2	Grundreaktionen, Gleichgewicht, Zellenspannung	249
7.2.3	Stoffmengenbilanz, Speicherfähigkeit	250
7.2.4	Entladecharakteristik	250
7.2.5	Die Nebenreaktionen	254
7.2.6	Laden von Bleibatterien	257
7.2.7	Die verschlossene Bleibatterie	259
7.2.8	Alterungsmechanismen	26 2
7.3	Nickel-Batterien	264
7.3.1	Nickel-Cadmium-Batterien	266
7.3.2	Nickel-Metall-Hydrid Batterien	278
7.4	Lithium-Batterien	281
7.4.1	Funktionsprinzip, chemische Reaktionen und Aktivmaterialien	283
7.4.2	Zellspannung	283
7.4.3	Elektrolyt und elektrochemisches Stabilitätsfenster	287
7.4.4	Weitere Zellkomponenten	290
7.4.5	Leitfähigkeit der Elektrodenmaterialien	292
7.4.6	Bauformen und Anwendungsgebiete	294
7.4.7	Betriebsweise und typische Leistungskenndaten	299
7.5	Natrium-Schwefel-Batterien	304
7.5.1	Die Elektroden	304
7.5.2	Der Elektrolyt/Separator	305
7.5.3	Das Heizsystem	306
7.5.4	Formen und Modulgrößen	307
7.5.5	Lade- und Entladevorgang	308
7.5.6	Zyklen, Kapazitäten und Lebensdauer	311
7.5.7	Wirkungsgrad, Leistung und Energien	312
7.5.8	Gefahren und Sicherheit	313
7.6	Redox-Flow-Batterien	315
7.6.1	Aufbau und Funktionsweise der Redox-Flow-Zelle	315
7.6.2	Mögliche Materialpaarungen	319
7.6.3	Lade- und Entladestrategien	320
7.6.4	Energie-, Leistungsdichte und Wirkungsgrad	322
7.6.5	Die Redox-Flow-Batterie im Vergleich	323
7.6.6	Lebensdauer und lebensdauerverkürzende Mechanismen	323
7.6.7	Anwendungsbereiche von Redox-Flow-Batterien	323
7.6.8	Recycling, Umwelt und Sicherheit	324
7.0.0	Literatur	325
_		
8	Chemische Energiespeicher	327
	Prof. DrIng. Michael Sterner (FENES OTH Regensburg)	
	Franz Bauer (FENES OTH Regensburg): Abschnitt 8.1	
	Fritz Crotogino (KBB Underground Technology): Abschnitt 8.4	
	Fabian Eckert (FENES OTH Regensburg): Abschnitte 8.1, 8.3, 8.4, 8.5, 8.6, 8.7	
	Christian von Olshausen (sunfire GmbH): Abschnitte 8.1, 8.2, 8.6, 8.7	
	DrIng. Daniel Teichmann (Hydrogenious Technologies GmbH): Abschnitt 8.4	
	Martin Thema (FENES OTH Regensburg): Abschnitte 8.2, 8.3, 8.4, 8.5, 8.6	

9	Mechanische Energiespeicher	495
	Prof. Dr. Ingo Stadler (CIRE TH Köln)	
	Franz Bauer (FENES OTH Regensburg): Abschnitt 9.3	
	Marcus Budt (Fraunhofer UMSICHT): Abschnitt 9.1	
	Prof. Eduard Heindl (Heindl Energy): Abschnitt 9.3	
	Dr. Daniel Wolf (Home Power Solution GmbH): Abschnitt 9.1	
9.1	Gasförmige Medien	497
9.1.1	Druckluftspeicherkraftwerke	497
9.1.2	Erneuerbare, emissionsfreie Druckluftspeicherprozesse	506
9.1.3	Druckluftspeichervolumen	515
9.2	Flüssige Medien	520
9.2.1	Pumpspeicherwerke	520
9.2.2	Innovative Konzepte zur Speicherung potenzieller Energie in flüssigen Medien	525
9.3	Feste Medien	548
9.3.1	Schwungradspeicher	548
9.3.2	Lageenergiespeicher	562
9.4	Zusammenfassung	573
	Literatur	573
10	Thermische Energiespeicher	57 9
	Prof. Dr. Ingo Stadler (CIRE TH Köln)	
	Dr. Andreas Hauer (ZAE Bayern): Abschnitte 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7	
10.1	Unterscheidungsmerkmale thermischer Speicher	581
10.2	Speichertechnologien	582
10.2.1	Sensible Wärmespeicherung	582
10.2.2	Latente Wärmespeicherung	582
10.2.3	Thermochemische Wärmespeicherung	583
10.3	Thermodynamische Grundlagen	58 3
10.3.1	Thermische Energie	583
10.3.2	Wärmeübertragung	584
10.3.3	Wärmedämmung	585
10.4	Sensible thermische Energiespeicher	586
10.4.1	Speichermaterialien	587
10.4.2	Speicher mit festem Speichermedium	589
10.4.3	Speicher mit flüssigem Speichermedium	592
10.4.4	Zusammenfassung	597
10.5	Latente thermische Energiespeicher	598
10.5.1	Charakterisierung von Materialien zur Latentwärmespeicherung	601
10.5.2	Materialien zur Latentwärmespeicherung	602
10.5.3	Wärmeübertragungskonzepte	607
10.5.4	Zusammenfassung	610
10.6	Thermochemische Energiespeicher	610
10.6.1	Speichermaterialien thermochemischer Prozesse	61 1
10.6.2	Bauformen	613
10.6.3	Zusammenfassung	615
10.7	Kosten	616
	Literatur	617

11	Lastmanagement als Energiespeicher	619
	Prof. Dr. Ingo Stadler (CIRE TH Köln)	
	Fabian Eckert (FENES OTH Regensburg): Abschnitte 11.4, 11.5, 11.6	
11.1	Besonderheiten von Demand Response im	
	Vergleich zu anderen Energiespeichern	623
11.2	Demand Response in Haushalten und Querschnitttechnologien	624
11.2.1	Speicherheizungen	624
11.2.2	Elektrische Warmwasserbereitung	626
11.2.3	Elektrische Kälteerzeugung	628
11.2.4	Heizungsumwälzpumpen	632
11.2.5	Lüftungsanlagen	633
11.2.6	Waschmaschinen, Wäschetrockner, Geschirrspülmaschinen	634
11.3	Demand Response in der Industrie	635
11.4	Zusammenfassung deutscher und europäischer Demand Response-Potenziale	639
11.4.1	Demand Response-Potenziale in Deutschland	639
11.4.2	Demand Response-Potenziale in Europa	640
11.4.3	Vergleich einzelner DSM-Studien	640
11.5	Entwicklungen und Trends	640
11.5.1	Einsatz von Lastabwurf in der Industrie	640
11.5.2	Entwicklung des technisch-ökonomischen Potenzials	641
11.5.3	Gesicherte Leistung und Integration von erneuerbarer Energie	642
11.5.4	Potenzial zur Reduzierung von Netzausbau und Jahreshöchstlast	642
11.6	Zusammenfassung	643
	Literatur	643
12	Vergleich der Speichersysteme	645
	Prof. DrIng. Michael Sterner (FENES OTH Regensburg)	
	Martin Thema (FENES OTH Regensburg): Abschnitte 12.1, 12.2, 12.3, 12.4	
12.1	Überblick über technische und ökonomische Parameter	648
12.2	Bestimmung der Anwendungsfelder durch Speicherkapazität	
	und Auspeicherdauer	648
12.2.1	Elektrische Energiespeicher – Kondensatoren und Spulen	654
12.2.2	Elektrochemische Energiespeicher – Batterien	65 5
12.2.3	Mechanische Energiespeicher – Pumpspeicher, Druckluft und Schwungmassen	656
12.2.4	Thermische Energiespeicher – Wärmespeicher	65 6
12.2.5	Chemische Energiespeicher – Power-to-X	656
12.2.5	Lastmanagement	657
	Kosten, Wirkungsgrad und Energiedichte im Vergleich	658
1 2.3 12.3.1	Vergleich aller Speicher nach Kosten, Wirkungsgrad und Energiedichte	658
12.3.1	Kostenvergleich von Stromspeichern nach Zyklendauer	661
	Entwicklungsstand, Stärken und Schwächen	662
12.4 12.4.1	Technologischer Entwicklungsstand der Energiespeicher	662
		663
12.4.2	Stärken und Schwächen verschiedener Technologien	663
12.5	Kostensenkungspotenziale für Batterien und Power-to-X	
12.5.1	Kostentrends und Kostenpotenziale von Lithium-Batterien	664 673
12.5.2	Kostensenkungspotenziale von Power-to-Gas	673
12.6	Perspektiven für Energiespeicher und gesellschaftliche Akzeptanz	674
12.7	Zusammenfassung	678
	Literatur	680

Teil IV Integration und Anwendung von Energiespeichern

13	Speicherintegration in einzelnen Energiesektoren	685
	Prof. DrIng. Michael Sterner (FENES OTH Regensburg)	
	Prof. Dr. Ingo Stadler (CIRE TH Köln)	
	Fabian Eckert (FENES OTH Regensburg): Abschnitte 13.1, 13.2, 13.3	
	Martin Thema (FENES OTH Regensburg): Abschnitt 13.1	
13.1	Integration im Stromsektor	687
13.1.1	Funktion und Nutzen von Speichern im Stromsektor	687
13.1.2	Pumpspeicherwerke und Speicherkraftwerke	694
13.1.3	Schwungradspeicher	706
13.1.4	Batteriekraftwerke	707
13.1.5	Dezentrale Batteriespeicher in Häusern und Quartieren	710
13.1.6	Inselnetze mit erneuerbaren Energien und Speichern	718
13.1.7	Wärmespeicher in solarthermischen Kraftwerken	733
13.2	Integration im Wärmesektor	736
13.2.1	Wärmespeicher für Solarthermie	736
13.2.2	Latent- und Sorptionsspeicher in Gebäuden und Haushalt	74
13.2.3	Holz als chemischer Speicher in Forst und Wald für die Wärmeversorgung	74
13.3	Integration im Verkehrssektor	752
13.3.1	Beimischung von Biokraftstoffen und Nutzung von Pflanzenöl	75
13.3.2	Integration von Wasserstoff im Verkehr	756
13.3.3	Integration von Schwungradspeichern im öffentlichen Nahverkehr	759
13.4	Zusammenfassung	76
	Literatur	764
14	Speicherintegration zur Kopplung unterschiedlicher Energiesektoren	769
	Prof. DrIng. Michael Sterner (FENES OTH Regensburg)	
	Prof. Dr. Ingo Stadler (CIRE TH Köln)	
	Fabian Eckert (FENES OTH Regensburg): Abschnitte 14.1, 14.2, 14.3	
	Norman Gerhardt (Fraunhofer IWES): Abschnitt 14.1	
	Christian von Olshausen (sunfire GmbH): Abschnitt 14.2	
	Martin Thema (FENES OTH Regensburg): Abschnitte 14.2, 14.3	
	Tobias Trost (Fraunhofer IWES): Abschnitt 14.2	
14.1	Kopplung von Strom- und Wärmesektor	77
14.1.1	Flexibilisierung der Kraft-Wärme-Kopplung über Wärmespeicher und Wärmenetze	77
14.1.2	Integration von Elektrowärmepumpen über Wärmespeicher und Wärmenetze	77
14.1.3	Integration von Power-to-Heat über Wärmespeicher und Wärmenetze	786
14.1.4	Batteriespeicher vs. Lastverschiebung vs. Wärmespeicher – ein Beispiel	786
14.2	Kopplung von Strom- und Verkehrssektor	78
14.2.1	Elektromobilität	78
14.2.2	Stromkraftstoffe	79
14.3	Kopplung von Strom- und Gassektor: Power-to-Gas	79
14.3.1	Power-to-Gas im Kontext der Energieversorgung	79
14.3.2	Entwicklung von Power-to-Gas in Deutschland und in den Nachbarländern	80
14.4	Zusammenfassung	81
	Literatur	81

XXIV Inhaltsverzeichnis

15	Rechtliche Rahmenbedingungen für Speicher in Deutschland	819
1 - 1	Dr. Henning Thomas, LL.M. (Dong Energy)	821
15.1	Rechtsvorschriften für die Energiespeicherung	821
15.1.1	Vorrang von EnWG, EEG und KWKG	821
15.2	Aktuelle Einordnung in das Energiewirtschaftsrecht	
15.2.1	Speicher im EnWG	821
15.2.2	Speicher im EEG	822
15.2.3	Zuordnung des Speichers zu Erzeugung und Vertrieb oder zum Netz	823
15.3	Netzanschluss von Stromspeichern	824
15.3.1	Anschluss nach dem EnWG	824
15.3.2	Anschluss nach dem EEG	824
15.4	Stromkostenbelastungen bei der Einspeicherung	825
15.4.1	Speicherung als Letztverbrauch von Strom	825
15 .4 .2	Netznutzungsentgelte	826
15.4.3	EEG-Umlage	827
15.4.4	Stromsteuer	830
15.4.5	Übersicht für Pumpspeicher, Batterien und Power-to-Gas	831
15.5	Teilnahme von Energiespeichern an den Energiemärkten	831
15.5.1	Vermarktungsmöglichkeiten im Energiewirtschaftsrecht	833
1 5 .5.2	Vermarktungsmöglichkeiten im EEG	836
15.5.3	Förderprogramme	839
15.6	Sonderfall Power-to-Gas	839
15.6.1	Privilegierte Einspeisung in das Erdgasnetz	840
15.6.2	Einsatz als Biokraftstoff	841
15.7	Genehmigung von Energiespeichern	841
15.7.1	Planerische Voraussetzungen	841
15.7.2	Genehmigungserfordernisse	841
15.8	Zusammenfassung	842
	Literatur	844
	Serviceteil	
	Epilog	846
	Stichwartverzeichnis	847