

BIOINORGANIC CHEMISTRY

A Short Course

ROSETTE M. ROAT-MALONE

Washington College Chestertown, MD

BWILEY-INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

CONTENTS

Preface

A	Acknowledgments xvi		
1	Inorganic Chemistry Essentials	1	
	1.1 Introduction, 1		
	1.2 Essential Chemical Elements, 1		
	1.3 Metals in Biological Systems: A Survey, 3		
	1.4 Inorganic Chemistry Basics, 6		
	1.5 Biological Metal Ion Complexation, 7		
	1.5.1 Thermodynamics, 7		
	1.5.2 Kinetics, 8		
	1.6 Electronic and Geometric Structures of Metals		
	in Biological Systems, 11		
	1.7 Bioorganometallic Chemistry, 16		
	1.8 Electron Transfer, 19		
	1.9 Conclusions, 22		
	References, 22		
2	Biochemistry Fundamentals	24	
	2.1 Introduction, 24		
	2.2 Proteins, 25		
	2.2.1 Amino Acid Building Blocks, 25		
	2.2.2 Protein Structure, 27		
	2.2.3 Protein Sequencing and Proteomics, 33		
	2.2.4 Protein Function, Enzymes, and Enzyme Kinetics, 36		

xiii

viii CONTENTS

2.2	NT .1.1.	A.'1. 20
2.3		C Acids, 39
		DNA and RNA Mulacular Structures 42
		DNA and RNA Molecular Structures, 42 Transmission of Genetic Information, 46
	2.3.3	Transmission of Genetic Information, 46 Genetic Mutations and Sita Directed Mutagenesis, 48
	2.3.4	Genetic Mutations and Site-Directed Mutagenesis, 48
		Genes and Cloning, 50 Genomics and the Human Genome, 52
2.4		inger Proteins, 54
2.4		Descriptive Examples, 57
2.5		sions, 63
2.3		nces, 63
Inst	rumenta	al and Computer-Based Methods
3.1	Introdu	action, 66
	3.1.1	Analytical Instrument-Based Methods, 66
	3.1.2	Spectroscopy, 67
3.2	X-Ray	Absorption Spectroscopy (XAS) and Extended X-Ray
	Absorp	tion Fine Structure (EXAFS), 68
		Theoretical Aspects and Hardware, 68
		Descriptive Examples, 70
3.3	•	Crystallography, 73
		Introduction, 73
		Crystallization and Crystal Habits, 74
		Theory and Hardware, 78
		Descriptive Examples, 83
3.4		n Paramagnetic Resonance, 85
	3.4.1	Theory and Determination of g-Values, 85
		Hyperfine and Superhyperfine Interactions, 91
		Descriptive Examples, 91
3.5		r Magnetic Resonance, 93
		Theoretical Aspects, 93
		Nuclear Screening and the Chemical Shift, 98
		Spin-Spin Coupling, 101
	3.5.4	
		Spin-Spin Decoupling, 103
	3.5.5	,
	3.5.6	
	3.5.7	Obtaining the NMR Spectrum, 106
	3.5.8	Two-Dimensional (2D) NMR Spectroscopy, 107
	3.5.9	Two-Dimensional Correlation Spectroscopy (COSY), 108
		Nuclear Overhauser Effect Spectroscopy (NOESY), 110
2.		Descriptive Examples, 111
3.6		auer Spectroscopy, 114
	3.6.1	Theoretical Aspects, 114

CONTENTS ix

	3.6.2	Quadrupole Splitting and the Isomer Shift, 116	
	3.6.3	Magnetic Hyperfine Interactions, 117	
	3.6.4	Descriptive Examples, 119	
3.7	Other 1	Instrumental Methods, 121	
	3.7.1	Atomic Force Microscopy, 121	
	3.7.2	Fast and Time-Resolved Methods, 123	
		3.7.2.1 Stopped-Flow Kinetic Methods, 123	
		3.7.2.2 Flash Photolysis, 124	
		3.7.2.3 Time-Resolved Crystallography, 124	
3.8	Introdu	action to Computer-Based Methods, 126	
3.9	Compu	iter Hardware, 126	
		ılar Modeling and Molecular Mechanics, 129	
	3.10.1	Introduction to MM, 129	
	3.10.2	Molecular Modeling, Molecular Mechanics, and	
		Molecular Dynamics, 130	
	3.10.3	Biomolecule Modeling, 134	
		Molecular Modeling Descriptive Examples, 135	
3.11		ım Mechanics-Based Computational Methods, 138	
	-	Introduction, 138	
	3.11.2	Ab-Initio Methods, 138	
	3.11.3	Density Function Theory, 139	
		Semiempirical Methods, 140	
3.12		iter Software for Chemistry, 141	
	3.12.1	Mathematical Software, 148	
3.13	World	Wide Web Online Resources, 149	
	3.13.1	Nomenclature and Visualization Resources, 149	
	3.13.2	Online Societies, Literature, Materials,	
		Equipment Web Servers, 151	
3.14	Summa	ary and Conclusions, 153	
	Referen	nces, 153	
Iron	-Conta	ining Oxygen Carriers and Their Synthetic Models	158
4.1	Introdu	action, 158	
4.2	Myogle	obin and Hemoglobin Basics, 163	
4.3	Structu	are of the Prosthetic Group, 165	
4.4	Analyt	ical Techniques, 166	
4.5	Mecha	nism for Reversible Binding of Dioxygen and	
	Cooper	rativity of Oxygen Binding, 168	
4.6	Behavi	or of Dioxygen Bound to Metals, 171	
4.7	Structu	are of the Active Site in Myoglobin and Hemoglobin:	
	Compa	rison to Model Compounds, 172	
4.8	Model	Compounds, 176	
	4.8.1	Cobalt-Containing Model Compounds, 176	
	4.8.2	Iron-Containing Model Compounds, 177	

4

X CONTENTS

	4.9	Binding of CO to Myoglobin, Hemoglobin, and Model Compounds, 182	
	4.10	Conclusions, 184	
		References, 185	
5	Сор	per Enzymes	187
	5.1	Introduction, Occurrence, Structure, Function, 187	
	5.2	Discussion of Specific Enzymes, 193	
		5.2.1 Azurin, 193	
		5.2.2 Plastocyanin, 197	
		5.2.3 Superoxide Dismutase, 199	
		5.2.4 Hemocyanin, 209	
	5.3	Model Compounds, 214	
		5.3.1 Introduction, 214	
		5.3.2 Type I Copper Enzyme Models, 215	
		5.3.3 Type II Copper Enzyme Models, 216	
		5.3.4 Type III Copper Enzyme Models, 217	
		5.3.4.1 Karlin Group Tridentate Model Compounds, 217	
		5.3.4.2 Tolman Group Tetradentate Model Compounds, 221	
		5.3.4.3 Kitajima Group Tetradentate Model Compounds, 222	
		5.3.4.4 Karlin Group Tetradentate Model Compounds, 226	
		5.3.5 Summary, 227	
	5.4	Conclusions, 228	
		References, 228	
6	The	Enzyme Nitrogenase	231
	6.1	Introduction, 231	
	6.2		
	6.3	Iron-Sulfur Clusters, 239	
	6.4	Fe-Protein Structure, 241	
	6.5	MoFe-Protein Structure, 244	
		6.5.1 Overview, 244	
		6.5.2 Details of the P-Cluster, 247	
		6.5.3 Details of the M Center, 251	
	6.6	Nitrogenase Model Compounds, 254	
		6.6.1 Structural Models, 255	
		6.6.2 Functional Models, 258	
	6.7	Conclusions, 261	
		References, 262	
7	Met	als in Medicine	265
	7.1	Introduction, 265	
	/.1	7.1.1 Inorganic Medicinal Chemistry, 265	
		O	

	7.1.2 Metal Toxicity and Homeostasis, 266
7.2	Therapeutic Compounds, 269
	7.2.1 Superoxide Dismutase Mimics, 269
	7.2.2 Vanadium-Based Diabetes Drugs, 273
	7.2.2.1 Introduction, 273
	7.2.2.2 Examples of Vanadium Compounds Tested as
	Insulin Mimetic Agents, 275
	7.2.2.3 The Role of Chromium, 278
	7.2.3 Platinum-Containing Anticancer Agents, 279
	7.2.3.1 Cis- and frani-Dichlorodiammineplatinum(II), 279
	7.2.3.2 Mechanism of cisDDP Antitumor Activity, 281
	7.2.3.3 Drug Resistance and DNA Repair Mechanisms, 286
	7.2.3.4 A New Nonclassical Platinum Antitumor Agent, 288
	7.2.3.5 Other Platinum-Containing Anticancer Compounds, 290
	7.2.3.6 Conclusions, 292
7.3	Diagnostic Agents, 292
	7.3.1 Technetium Imaging Agents, 292
	7.3.1.1 Introduction, 292
	7.3.1.2 "Technetium Essential" Radiopharmaceuticals, 294
	7.3.1.3 "Technetium Tagged" Radiopharmaceuticals, 295
	7.3.2 Gadolinium MRI Imaging Agents, 300
	7.3.2.1 Introduction, 300
	7.3.2.2 Magnetic Imaging Considerations, Kinetics,
	and Thermodynamics of Complexes, 301
	7.3.2.3 Selected Drugs in Usage or in Trials, 304
7.4	
	7.4.1 Introduction, 312
	7.4.2 The Atxl Metallochaperone, 314
	7.4.3 Hah 1 or Atoxl Metallochaperone, 316
	7.4.4 Superoxide Dismutase Metallochaperones, 317
	7.4.5 Copper Toxicity, Disease States, and Treatments, 319

7.5 Metals in Medicine (MTM), 325

Conclusions, 324

Summary, Goals; Past, Present, and Future MIM Development, 325 References, 329

7.4.5.2 Wilson and Menkes Diseases, 321

7.4.6

Index 337

7.4.5.1 Familial Amyotrophic Lateral Sclerosis (FALS), 319