

# GRAVITATION AND COSMOLOGY: PRINCIPLES AND APPLICATIONS OF THE GENERAL THEORY OF RELATIVITY

**STEVEN WEINBERG** Massachusetts Institute of Technology

JOHN WILEY & SONS

i

# CONTENTS

Sections marked with an asterisk are somewhat out of the book's main line of development and may be omitted in a first reading.

Preface

Notation

Copyright Acknowledgements

# PART ONE PRELIMINARIES

#### **I HISTORICAL INTRODUCTION 3**

# 1 History of Non-Euclidean Geometry 4

Euclid's Fifth Postulate • Alternative postulates of Proclos, Wallis, Legendre, Saccheri fj Gauss, and non-Euclidean geometry Q The geometry of Gauss, Bolyai, and Lobachevski Q Klein's model Q Inner properties of curved surfaces Q Curvature determined from distances Q The metric Q Gaussian curvature fj Riemannian geometry

# 2 History of the Theory of Gravitation 11

Galileo and falling bodies Q Measurements of the ratio of gravitational and inertial mass, by Newton, Bessel, Eotvos, and Dicke Q] The inverse-square law Q Newton's theory of gravitation Q Anomalous precession of the perihelia of Mercury • Newcomb and Seeliger

# 3 History of the Principle of Relativity 15

Inertial frames in Newtonian mechanics Q The Galileo group Q Noninertial frames and absolute space Q Newton's rotating bucket Q] Mach's principle fj Inertial frames and the rotation of the universe Q Maxwell's equations not Galilean-invariant  $\bullet$  The ether Q The Michelson-Morley experiment  $\bullet$  Lorentz invariance Q Relativity restored by Einstein Q The Principle of Equivalence fj Scalar gravitational theories Q Gravitation and the metric tensor Q The General Theory of Relativity

Bibliography 20

References 21

### 2 SPECIAL RELATIVITY 25

#### 1 Lorentz Transformations 25

The transformations defined fj Invariant proper time fj Invariant speed of light Q] Only Lorentz transformations leave the proper time invariant fj Homogeneous, inhomogeneous, proper, improper Lorentz transformations Q Rotations and boosts

#### 2 Time Dilation 29

The special-relativistic dilation Q The Doppler effect

#### **3** Particle Dynamics **31**

Relativistic force fj The relativistic second law of motion

#### 4 Energy and Momentum 32

The energy-momentum four-vector Q] The nonrelativistic limit fj Lorentz invariance of the conservation laws Q Mass as a form of energy

# 5 Vectors and Tensors 35

Contravariant and covariant four-vectors  $\bullet$  Raising-and lowering indices Q Gradients fj Tensors fj Linear combinations, direct products, contraction, differentiation Q The Minkowski tensor Q The Levi-Civita tensor Q The zero tensor Q Lorentz invariant equations

# 6 Currents and Densities 39

The current four-vector fj Conservation • Constancy and Lorentz invariance of the total charge

#### 7 Electrodynamics 41

The field-strength tensor \~\ Manifestly invariant forms of the Maxwell equations

#### 8 Energy-Momentum Tensor 43

Energy-momentum tensor of point particles Q The conservation law Q Collisions Q Charged particles Q Energy-momentum tensor of electromagnetic fields

#### 9 Spin 46

Total angular momentum Q Internal and orbital angular momenta Q The spin four-vector

#### 10 Relativistic Hydrodynamics 47

Perfect fluids Q Pressure and proper energy density Q Energy-momentum tensor Q Velocity four-vector Q The particle current Q Relativistic Euler equation Q The entropy equation Q Equations of state Q Speed of sound

#### 11 Relativistic Imperfect Fluids\* 53

The Eckart formalism Q Entropy production Q Heat conduction, shear viscosity, bulk viscosity Q Lorentz covariant dissipative terms in the energy-momentum tensor Q Cases of small bulk viscosity

#### 12 Representations of the Lorentz Group\* 58

Group representations Q The infinitesimal Lorentz group Q Commutation relations Q The representations  $(A, B) \pounds 2$  Tensors and spinors Q Decomposition according to spin • Representations up to a sign

#### 13 Temporal Order and Antiparticles\* 61

The relativity of temporal order Q Absorption before emission ? Q The quantum paradox Q Antiparticles necessary in a relativistic quantum theory

Bibliography 63

References 64

# PART TWO THE GENERAL THEORY OF RELATIVITY

# **3 THE PRINCIPLE OF EQUIVALENCE 67**

#### 1 Statement of the Principle 67

Equivalence of gravitation and inertia rj Analogy with metric geometry Q The weak and strong principles of equivalence

xiv Contents

#### 2 Gravitational Forces 70

The equation of motion fj The affine connection Q The metric tensor Q Motion of photons • Light travel times Q Determination of the locally inertial frames

# 3 Relation between $g^{\wedge}$ and $r^{\wedge}_{v}$ 73

Derivatives of the metric in terms of the affine connection Q The Principle of Equivalence sharpened  $\bullet$  Solution for the affine connection Q Inverse of the metric tensor Q Variational form of the equations of motion Q Geodesies

### 4 The Newtonian Limit 77

Relation between  $<7_{00}$  and the Newtonian potential

# 5 Time Dilation 79

Time dilation in a gravitational field • Red shift of spectral lines • The solar red shift • White dwarf red shifts • The Pound-Rebka experiment • Red and blue shifts from artificial satellites Q Quantum derivation

### 6 Signs of the Times 85

Congruence relating the metric and Minkowski tensors Q Sylvester's law of inertia Q Signs of the metric eigenvalues

#### 7 Relativity and Anisotropy of Inertia 86

Mach versus Newton • The Einstein compromise • The Hughes-Drever experiment

**Bibliography 88** 

References 89

# 4 TENSOR ANALYSIS 91

# 1 The Principle of General Covariance 91

General covariance as an expression or the Principle of Equivalence  $\bullet$  Contrast between general covariance and Lorentz invariance Q Dynamic symmetries Q General covariance sufficient only on small scales

# 2 Vectors and Tensors 93

Scalars, contra variant vectors, covariant vectors, tensors Q The metric and Kronecker tensors Q Invariant equations

Contents xv

#### 3 Tensor Algebra 96

Linear combinations  ${\boldsymbol{\bullet}}$  Direct products  ${\boldsymbol{\bullet}}$  Contraction  ${\boldsymbol{\bullet}}$  Raising and lowering indices

#### 4 Tensor Densities 98

Transformation of the metric determinant • Scalar densities Q Tensor densities fj Weights fj Volume elements as scalar densities Q The Levi-Civita tensor density Q Tensor density algebra

#### 5 Transformation of the Affine Connection 100

The inhomogeneous transformation law Q] Transformation of derivatives of the metric tensor fj Alternative derivation of the relation between the affine connection and metric tensor Q Alternative derivation of the equation of motion

#### 6 Covariant Differentiation 103

Transformation of derivatives of tensors Q] Covariant derivatives of tensors Q Covariant derivatives of tensor densities Q Linear combinations, direct products, contraction Q Covariant derivative of the metric tensor • Raising and lowering indices Q Algorithm for the effects of gravitation

#### 7 Gradient, Curl, and Divergence 106

Covariant derivatives of scalars Q Antisymmetric covariant derivatives of vectors Q Covariant divergence of vectors Q Trace of the affine connection Q) Gauss's theorem Q Cyclic sums of covariant derivatives

#### 8 Vector Analysis in Orthogonal Coordinates\* 108

Diagonal metrics Q "Ordinary" components Q Volumes Q Scalar products Gradient, curl, and divergence • The Laplacian

#### 9 Covariant Differentiation Along a Curve 110

Derivatives along a curve • Vectors Q] Tensors Q Relation to ordinary covariant derivatives Q Parallel transport

#### 10 The Electromagnetic Analogy\* 111

Gauge invariance • Gauge-covariant derivatives • Conserved currents

# 11 p -Forms and Exterior Derivatives\* 113

p-Forms Q Exterior products Q Differential forms Q Exterior derivatives Q Poincare's lemma Q Converse to Poincare's lemma Q Orientable manifolds Q] Integrals of p-forms Q The generalized Stokes's theorem

References 119

# **5 EFFECIS OF GRAVITATION 121**

# 1 Particle Mechanics 121

Parallel transport of velocity and spili • Torqiti'IMM force Q ThorhttN firtwessltfri1 |-J

# 2 Electrodynamics 124

Generally covariant forms of the Maxwell equations Q Electromagnetic force four-vector Q Current four-vector Q Conservation law

# 3 Energy-Momentum Tensor 126

Covariant divergence of the energy-momentum tensor Q Ideal gas Q] Electromagnetic fields Q Total energy, momentum, angular momentum

# 4 Hydrodynamics and Hydrostatics 127

Energy-momentum tensor of perfect fluids Q The conservation laws Q Normalization of the velocity four-vector Q Hydrostatic equilibrium

References 129

# 6 CURVATURE 131

# 1 Definition of the Curvature Tensor 131

Second derivatives of the metric needed to construct new tensors Q Third derivatives of the transformed coordinate [3 The Riemann-ChristofFel curvature tensor Q] Uniqueness of generally covariant equations

# 2 Uniqueness of the Curvature Tensor 133

Uniqueness of the curvature tensor in locally inertial coordinates Q Uniqueness in general coordinates Q Ricci tensor Q Curvature scalar

# 3 Round Trips by Parallel Transport 135

Change in a vector parallel-transported around a closed curve Q Construction of vector fields with vanishing covariant derivatives

Contents xvii

# 4 Gravitation versus Curvilinear Coordinates 138

Diagnosis of inertial and noninertial coordinates Q Necessary and sufficient conditions for absence of a gravitational field

# 5 Commutation of Covariant Derivatives 140

Commutator of covariant derivatives of a covariant vector FJ Extension to general tensors

### 6 Algebraic Properties of R<sub>XIIVK</sub> 141

Fully covariant curvature tensor • Symmetry, antisymmetry, and cyclicity • Uniqueness of the contracted tensors

### 7 Description of Curvature in N Dimensions\* 142

The Petrov notation Q Number of algebraically independent components fj Special forms of the curvature tensor in one, two, and three dimensions Q Number of curvature scalars {T] The Weyl tensor

#### 8 The Bianchi Identities 146

The general Bianchi identities • Contracted Bianchi identities

#### 9 The Geometric Analogy\* 147

Geometric concepts useful but not essential in general relativity • Geometric significance of the curvature tensor

#### 10 Geodesic Deviation\* 148

Relative motion of freely falling particles

Bibliography 149

I

L

I

References 149

# 7 EINSTEIN'S FIELD EQUATIONS 151

# **1** Derivation of the Field Equations 151

Energy-momentum tensor as the right-hand side of the field equation [J Properties of the left-hand side Q Einstein's field equations  $\bullet$  Vanishing of the Ricci tensor in vacuum Q] The cosmological constant

# 2 Another Derivation\* 155

Nonmetric tensors fj General linear equation fj Ambiguity removed by Newtonian limit

xviii Contents

# 3 The Brans-Dicke Theory 157

Reciprocal gravitational constant as a scalar field • Properties of the scalar field energy-momentum tensor Q] Brans-Dicke field equations [J The Einstein limit

# 4 Coordinate Conditions 161

Bianchi identities and nonuniqueness of solutions of the Einstein equations Q Analogy with electrodynamics • Harmonic coordinate conditions • Wave equations for the coordinates

# 5 The Cauchy Problem 163

Constraints on the initial data fj Ambiguity in the solutions Q Removal of the ambiguity by coordinate conditions fj Stability of the initial constraints

# 6 Energy, Momentum, and Angular Momentum of Gravitation 165

Quasilinear form of the Einstein field equations Q Energy-momentum tensor of gravitation • Total energy, momentum, and angular momentum of an isolated system and its gravitational field Q Quadratic approximation to the energy-momentum tensor of gravitation Q Lorentz covariance and convergence of the total energy and momentum • Calculation of the total energy, momentum, and angular momentum from the asymptotic field Q Positivity of the energy • Invariance of the total energy and momentum under coordinate transformations that approach the identity at infinity Q Additivity of the energy and momentum Q Yet another derivation of the field equations

#### Bibliography 171

References 172

# PART THREE APPLICATIONS OF GENERAL RELATIVITY

# 8 CLASSIC TESTS OF EINSTEIN'S THEORY 175

# 1 The General Static Isotropic Metric 175

The metric in terms of four unknown functions fj Elimination of off-diagonal terms Q The standard form Q The isotropic form Q Metric inverse and determinant • Affine connection Q] Ricci tensor Q Harmonic coordinates

# 2 The Schwarzschild Solution 179

Vacuum equations in "standard" coordinates Q Solution for the metric Q Isotropic and harmonic forms Q Identification of the integration constant

# 3 Other Metrics 182

The Robertson expansion Q Conversion to standard and harmonic forms  ${\mbox{\cdot}}$  Reduction to two unknowns

# 4 General Equations of Motion 185

Orbital equations in standard coordinates Q Constants of the motion Q Particle in a circular orbit Q Orbit shapes

# 5 Unbound Orbits: Deflection of Light by the Sun 188

Impact parameter and asymptotic velocity [[] General orbit shapes Q Robertson expansion Q Deflection of light by the sun • Conceptual problems • Observational problems • Summary of optical observations • Long baseline interferometry Q Radio observations

### 6 Bound Orbits: Precession of Perihelia 194

Evaluation of the constants of motion Q] Orbit shapes and precession per revolution Q Robertson expansion Q Conceptual problems Q Theory and observation for Mercury, Venus, Earth, and Icarus • Newtonian perturbations • Solar oblateness

#### 7 Radar Echo Delay 201

Time as a function of position Q The Robertson expansion  $\bullet$  Time delay  $\bullet$  Observational difficulties Q Comparison of theory and observation fj Echo arrival times in a semirealistic model

#### 8 The Schwarzschild Singularity\* 207

Singularity of the metric at the Schwarzschild radius Q Practical irrelevance of the singularity • Singularity-free coordinate systems

#### Bibliography 209

References 209

#### 9 POST-NEWTONIAN CELESTIAL MECHANICS 211

#### 1 The Post-Newtonian Approximation 212

Expansions in powers of the typical velocity Q Post-Newtonian approximation • Terms needed in the affine connection • Terms needed in the metric • Expansion of the Ricci tensor • Expansion of the energy-momentum tensor • Post-Newtonian field equations • Solutions • Scalar potential, vector potential, and second potential

#### xx Contents

#### 2 Particle and Photon Dynamics 220

Post-Newtonian equation of motion Q Proper time fj Single-particle Lagrangian fj Equation of motion of photons

## 3 The Energy-Momentum Tensor 222

Newtonian conservation laws Q Post-Newtonian conservation laws Q Energymomentum tensor for freely falling particles [J The Post-Newtonian program

# 4 Multipole Fields 225

The metric far from a finite body fj The metric anywhere outside a spherical body FJ The metric outside a rotating sphere

### 5 Precession of Perihelia 230

Runge-Lenz vector Q Additivity of contributions to the precession  $\land\$  Precession of perihelia for a spherical nonrotating sun Q Effect of solar rotation

### 6 Precession of Orbiting Gyroscopes 233

Equation of motion of the spin fj Redefinition of the spin fj Observability of the precession Q Geodetic precession Q Hyperfine precession fj Satellite experiments

#### 7 Spin Precession and Mach's Principle\* 239

Vanishing of precession in inertial frames fj The Lense-Thirring effect Q The Kerr solution • The Brill-Cohen solution

#### 8 Post-Newtonian Hydrodynamics\* 241

Post-Newtonian program for cold fluids FJ Newtonian conservation law Q Post-Newtonian field equations Q Fluids with nonvanishing temperature

# 9 Approximate Solutions to the Brans-Dicke Theory 244

Post-Newtonian field equations FJ Solution for a static spherically symmetric mass  $\pounds 2$  Evaluation of the Robertson parameters fj Effects of rotation Q Effective "constant" of gravitation

#### Bibliography 248

Reference\* 249

# **IO GRAVITATIONAL RADIATION 251**

# 1 The Weak-Field Approximation 252

Einstein equations for a weak field Q Gauge invariance fj Harmonic coordinates Q Retarded wave solutions Q Homogeneous solutions

Contents

# 2 Plane Waves 255

Physical and unphysical components of the polarization tensor Helicities Analogy with electromagnetic plane waves

# 3 Energy and Momentum of Plane Waves 259

Gauge invariance of the energy-momentum tensor FJ Evaluation of the energy-momentum tensor

# 4 Generation of Gravitational Waves 260

Power per solid angle emitted by a periodic source fj Energy per solid angle emitted by a Fourier integral source • Emission of gravitational radiation in collisions fj Gravitational radiation from the sun

# 5 Quadrupole Radiation 267

Small sources Q Total power emitted by a periodic source Q Total energy emitted by a Fourier integral source fj Comments on calculation of the quadrupole tensor Q Radiation by a plane sound wave fj Weber's cylinders Q Radiation by a rotating body FJ Negligibility of gravitational radiation in celestial mechanics Q Pulsars

# 6 Scattering and Absorption of Gravitational Radiation 274

Scattering amplitude fj Scattering cross-section Q Total cross-section Q Optical theorem

# 7 Detection of Gravitational Radiation 276

Resonant quadrupole antennas Q Total and scattering cross-sections  $\bullet$  Longitudinal antennas fj Spherical antennas fj Tuning £2 Detection of the Crab pulsar [3 Steady and burst sources  $\bullet$  Earth and moon as antennas FJ Weber's experiments Q Future experiments

# :. S Quantum Theory of Gravitation\* 285

JrChravitons FB Number density in plane waves Q Graviton emission in atomic [Mftoltisions [J Graviton emission in particle collisions Q Infrared divergences Q

itaneous and induced emission • Quantum gravitational field FJ Problems th Lorentz covariance Q Approaches to the quantization problem FJ Necessity • the Principle of Equivalence

# Gravitational Disturbances in Gravitational Fields\* 290

htini identity fj Einstein's equations for small perturbations Q Equivalent | The Lie derivative

tiy 293 294 xxt

xxii Contents

#### II STELLAR EQUILIBRIUM AND COLLAPSE 297

#### 1 Differential Equations for Stellar Structure 299

The fundamental equation of relativistic stellar equilibrium FJ Isentropic stars [J The interior metric fj The total mass, nucleon number, thermal energy, gravitational energy Q Stellar structure determined by central density

#### 2 Stability 304

Transition from stability to instability when the energy is stationary fj Variational form of the equilibrium condition

#### 3 Newtonian Stars: Polytropes and White Dwarfs 308

The fundamental equation of nonrelativistic stellar equilibrium  $\pounds 2$  Polytropes fj The Lane-Emden function Q Masses and radii as functions of central density fj Thermal and gravitational energies as functions of mass and radius Q Stability Q] Vibration and rotation frequencies FJ White dwarfs fj The Chandrasekhar limit Q The surface potential

#### 4 Neutron Stars 317

Neutron degeneracy pressure <u>fJ</u> Analogy with white dwarfs fj Mass and radius as functions of central density fj The limiting configuration FJ Stability FJ The Oppenheimer-Volkoff limit Q Hydrogen contamination fj Beta stability • The minimum mass Q Muon and baryon contamination fj] More realistic models Q Pulsars

#### 5 Supermassive Stars 325

Radiation-dominated pressure Q Newtonian structure FJ General relativity and stability

#### 6 Stars of Uniform Density 330

Solution of the fundamental equation Q Upper limit on the surface red shift fj Large central red shifts

#### 7 Time-Dependent Spherically Symmetric Fields 335

The standard form Q Elements of the Ricci tensor Q The Birkhoff theorem

#### 8 Comoving Coordinates 338

The comoving coordinate systems fj Gaussian and Gaussian normal coordinates fj Elements of the Ricci tensor

Contents xxiii

# 9 Gravitational Collapse 342

Interior solution in comoving coordinates Q Collapse in a finite proper time fj] Matching to the exterior solution FJ Evolution of the surface red shift Q External field measurements Q Carter's theorem Q] Efficiency of energy production FJ Inevitability of collapse FJ Black holes

**Bibliography 350** 

References 352

PART FOUR FORMAL DEVELOPMENTS

# 12 THE ACTION PRINCIPLE 357

# 1 The Matter Action: An Example 358

Equations of motion and field equations for a collisionless plasma fj Tentative action Q Principle of stationary action Q Verification of the action principle

# 2 General Definition of T'' 360

Energy-momentum tensor as the functional derivative of the action with respect to the metric FJ Verification for a collisionless plasma fj] Electric current as the functional derivative of the action with respect to the vector potential

# 3 General Covariance and Energy-Momentum Conservation 361

Infinitesimal coordinate transformations of dynamical variables and the metric • General covariance implies conservation of the energy-momentum tensor Q Gauge invariance implies conservation of the electric current

# 4 The Gravitational Action 364

**The** action for a gravitational field Q Derivation of the Einstein equations [[] Derivation of the Bianchi identities

# 5 The Tetrad Formalism\* 365

| Spinors and general covariance • Definition of the tetrad • Scalar components of fields fj General covariance and local Lorentz covariance Q Coordinate

i • Lorentz tensors and spinors • Coordinate scalar derivatives • Definii of the energy-momentum tensor • Symmetry and conservation of the energynentum tensor Q Derivation of the field equations xxiv Contents

#### 13 SYMMETRIC SPACES 375

### 1 Killing Vectors 375

Isometries Q] Killing vectors • Maximum number of independent Killing vectors • Homogeneous spaces fj Isotropic spaces Q Maximally symmetric spaces Q Integrability conditions

#### 2 Maximally Symmetric Spaces: Uniqueness 381

Structure of the Riemann-Christoffel tensor for maximally symmetric spaces FJ Constancy of the curvature Q] Equivalence of maximally symmetric metrics with equal curvature

#### 3 Maximally Symmetric Spaces: Construction 385

Embedding in (N + 1) dimensions fj Calculation of the metric fj Rotations and quasitranslations • Killing vectors • Geodesies [J Curvature • Locally Euclidean maximally symmetric spaces FJ Global properties Q Volume FJ The deSitter metric

#### 4 Tensors in a Maximally Symmetric Space 392

Form-invariant tensors FJ Maximally form-invariant tensors

#### 5 Spaces with Maximally Symmetric Subspaces 395

Canonical form of the metric Q Spherically symmetric spaces and space-times fj Spherically symmetric and homogeneous space-times

#### Bibliography 404

References 404

# PART FIVE COSMOLOGY

#### 14 COSMOGRAPHY 407

#### 1 The Cosmological Principle 409

Cosmic standard coordinates fj Equivalent coordinates Q Isometries and form invariance Q] Isotropy and homogeneity

#### 2 The Robertson-Walker Metric 412

General form of the metric Q Volume and circumference of space Q Cosmic scale factor Q Rotations and quasitranslations Q Comoving coordinates Q Free fall of the fundamental observers fj Perfect fluid form of the energy-momentum tenso; • Conservation of energy and galaxies fj Proper distance

# 3 The Red Shift 415

Relation between photon departure and arrival times and light source location Q The red-shift parameter z fj Red shifts as Doppler shifts [] Discovery of the red shifts FJ Slipher, Wirtz, Lundmark, and Hubble

# 4 Measures of Distance 418

Light paths • Parallax and parallax distance Q Apparent luminosity and luminosity distance • Angular diameter and angular diameter distance FJ Proper motion and proper-motion distance FJ Relations among the measures of distance Q Sources with smooth edges Q Sources with smooth spectra • Astronomical unit, parsec, apparent magnitude, absolute magnitude, distance modulus, color index

### 5 The Cosmic Distance Ladder 427

Kinematic Methods: The sun, trigonometric parallax, moving clusters, the Hyades, statistical proper motion studies FJ Main-Sequence Photometry: The Hertzsprung-Russell relation, open clusters and globular clusters, stellar populations fj] Variable Stars: R R Lyrae stars, classical Cepheids, W Virginis stars, the period-luminosity relation, recalibration of the distance scale, source of the discrepancy, relative sizes of galaxies • Novae, H II regions, Brightest stars, Globular Clusters, and so on: Distance to the Virgo cluster Q Brightest Galaxies: Absolute magnitude of NGC4472, Scott effect

#### 6 The Red-Shift Versus Distance Relation 441

Hubble constant and deacceleration parameter Q Expansion in powers of z for time of flight, radial coordinate, luminosity distance, apparent luminosity, apparent magnitude • Problems in the measurement of  $H_o$  and  $q_0$ : Galactic rotation, aperture, fc-term, absorption, uncertainty in L, Scott effect, shear field, galactic evolution • The Hubble program FJ Recent measurements Q Quasistellar objects Q Functional equation for the scale factor fj Rate of change of red shifts

# 7 Number Counts 451

Number counts as a function of red shift and apparent luminosity or flux density Q Spectral index Q Source evolution • Series expansions for nearby sources • Radio source surveys FJ Excess of faint sources

# 8 The Steady State Cosmology 459

The perfect cosmological principle Q The steady state metric • Continuous creation FJ Red shift versus luminosity distance • Number counts

Bibliography 464

References 466

# 15 COSMOLOGY: THE STANDARD MODEL 469

# 1 Einstein's Equations 470

Robertson-Walker metric, affine connection, Ricci tensor Q First-order field equation fj Upper limit on the age of the universe • Curvature and the future of the universe [J Mach's principle Q Newtonian cosmology

# 2 Density and Pressure of the Present Universe 475

Critical density • Density of galactic mass • Intergalactic mass inside and outside galactic clusters • Radio, microwave, far-infrared, optical, X-ray, y-ray, and cosmic ray densities Q Pressure

# 3 The Matter-Dominated Era 481

Time as a function of R Q Age of the universe fj Red shift versus luminosity distance and parallax distance FJ Number counts Q Measurements of the age of the universe: uranium dating, globular clusters Q Particle and event horizons

# 4 Intergalactic Emission and Absorption Processes 491

Optical depth Q Stimulated emission Q The Einstein relation Q Isotropic background fj Resonant absorption FJ Absorption trough fj] Absorption and emission of 21-cm radiation fj Search for Lyman a absorption Q Isotropic X-ray background FJ Thermal history of intergalactic hydrogen Q Thomson scattering • Time delay by intergalactic plasma • Extragalactic pulsars

# 5 The Cosmic Microwave Radiation Background 506

Black-body radiation fj Black-body temperature and antenna temperature FJ Models with *TR* constant • Specific photon entropy • Hot models • Estimates of black-body temperature in the cosmological theory of element synthesis fj Observation of the cosmic microwave radiation background Q Absorption by interstellar molecules fj Summary of measurements of black-body temperature Q Gray-body radiation and the Rayleigh-Jeans law • Expected departures from the black-body spectrum fj Anisotropies of small and large angular scale • Velocity of the solar system fj Homogenization of the universe fj Discrete source models [J Scattering of cosmic ray electrons, electrons in radio sources, cosmic ray photons, and protons

# 6 Thermal History of the Early Universe 528

Summary of the early history of the "universe • Time scale • Thermal equilibrium • Vanishing chemical potentials Q The lepton-photon era fj Conditions at  $10^{120}$ K FJ Decoupling of neutrinos fj Neutrino temperature after electron-positron annihilation fj] Time as a function of temperature fj Degenerate neutrinos • Measurements of neutrino degeneracy

Contents xxvu

#### 7 Helium Synthesis 545

Theories of nucleosynthesis Q Neutron-proton conversion rates fj] Neutron abundance as a function of time fi Equilibrium abundances of complex nuclei fi] The deuterium bottleneck Q Helium production at 10% K FJ Measurements of the cosmic helium abundance: stellar masses and luminosities, solar neutrino experiments, direct solar measurements, theory of globular clusters, stellar spectra, spectroscopy of interstellar matter, extragalactic measurements Q Modifications in the expected helium abundance: cool models, fast or slow models, neutrino interactions, degeneracy

#### The Formation of Galaxies 561 8

Jeans's theory fj Analogy with plasma waves Q Acoustic limit Q Jeans's mass Q Effect of black-body background radiation fj Phases of galactic growth fj Acoustic damping Q Critical mass Q Observation of protogalactic fluctuations as smallscale anisotropies in the microwave background

#### 9 Newtonian Theory of Small Fluctuations 571

Unperturbed solutions O First-order equations O Plane-wave solutions fi Rotational modes FJ Differential equation for compressional modes Q Zeropressure solutions: growth from recombination to the present fj Zero-curvature solutions: stable and unstable modes

#### General-Relativistic Theory of Small Fluctuations 578 10

Dissipative terms in the energy-momentum tensor fj Unperturbed solutions • : Equivalent solutions fj Elimination of space-time and time-time components FJ 'Perturbations in the affine connection, Ricci tensor, source tensor fi First-order

stein equations and equations of motion Q Unphysical solutions Q Plane I'fraves • Radiative modes: absorption and instability of gravitational waves • Rotational modes • Compressional modes: four coupled equations, long wave-

gth limit, growth at early times

#### 11 The Very Early Universe 588

nentary and composite particle models Q Fossil quarks and gravitons Q] Heat luction by bulk viscosity • Symmetric cosmologies • Necessity of a past nlarity fj Necessity of a future singularity fj Periodic cosmologies

aphy 597 599

xxviii Contents

#### 16 COSMOLOGY: OTHER MODELS 611

#### 1 Naive Models: The Olbers Paradox 611

Infinite density of starlight in an infinite eternal universe [J Effects of absorption Q Radiation and neutrino densities in modern cosmologies

# 2 Models with a Cosmological Constant 613

Effective density and pressure Q Static Einstein model fj deSitter model Q Lemaitre models fj Coasting period [J Eddington-Lemaitre model fj Instability of the static model

# 3 The Steady State Model Revisited 616

Correction term in the field equation Q The C-field Q Density of the universe fj Continuous creation of background radiation fj Action-at-a-distance formulations of electrodynamics

# 4 Models with a Varying Constant of Gravitation 619

Weakness of gravitation Q Numerical coincidences Q Dirac's theory: R and 6? versus  $t \cdot$  The Brans-Dicke theory: field equations, initial constraint, solutions for zero pressure and curvature, nucleosynthesis, decrease in Q fj Upper limits on the rate of change of G: radar observations of Mercury and Venus, lunar laser ranging, solar eclipse records, fossil corals, effects on the earth's crust, stellar evolution, early temperature of the earth

Bibliography 631

References 631

#### APPENDIX

Some Useful Numbers 635

INDEX 641