Introduction to Graph Theory

Douglas B. West
University of Illinois - Urbana

PRENTICE HALL
Upper Saddle River, NJ 07458

Contents

Preface xi
Chapter 1 Fundamental Concepts 1
1.1 Definitions and Examples 1What is a Graph?, 1Graphs as Models, 2Matrices and Isomorphism, 5
Exercises, 11
1.2 Paths and Proofs 14
Induction and Walks, 15
Equivalences and Connected Graphs, 17
Contradiction and Bipartite Graphs, 20
Extremality, 21
Exercises, 23
1.3 Vertex Degrees and Counting 25
Counting and Bijections, 26
The Pigeonhole Principle, 29
Turan's Theorem, 32
Exercises, 36
1.4 Degrees and Algorithmic Proof 40
Algorithmic or Constructive Proof, 40
Graphic Sequences, 42
Degrees and Digraphs, 46
Exercises 47
Chapter 2 Trees and Distance 51
2.1 Basic properties 51
Properties of Trees, 51
Distance in Graphs 54
Proving a Stronger Result, 55
Disjoint Spanning Trees, 58
Exercises, 59
2.2 Spanning Trees and Enumeration 63
Enumeration of Trees, 63
Spanning Trees in Graphs, 6 65
Decomposition and Graceful Labelings, 69
Exercises, 70
2.3 Optimization and Trees 73
Minimum Spanning Tree, 74
Shortest Paths, 76
Trees in Computer Science, 79
Exercises, 82
2.4 Eulerian Graphs and Digraphs 85
Eulerian Circuits, 85
Directed Graphs, 88
Applications, 91
Exercises, 94
Chapter 3 Matchings and Factors 98
3.1 Matchings in Bipartite Graphs 98
Maximum Matchings, 99
Hall's Matching Condition, 100
Min-Max Theorems, 102
Independent Sets, 103
Exercises, 105
3.2 Applications and Algorithms 109
Maximum Bipartite Matching, 109
Weighted Bipartite Matching, 111
Stable Matchings (optional), 116
Faster Bipartite Matching (optional), 118
Exercises, 120
3.3 Matchings in General Graphs 121Tutte's 1-factor Theorem, 121
/-factors of Graphs, 125
Edmonds' Blossom Algorithm (optional), 127
Exercises, 131
Chapter 4 Connectivity and Paths 133
4.1 Cuts and Connectivity 133
Connectivity, 133
Edge-connectivity, 136
Blocks, 139
Exercises, 141
$4.2 \wedge$-connected Graphs 144
2-connected Graphs, 144
Connectivity of Digraphs, 147
\wedge-connected and ^-edge-connected Graphs, 148
Applications of Menger's Theorem, 152
Exercises, 155
4.3 Network Flow Problems 158
Maximum Network Flow, 158
Integral Flows, 163
Supplies and Demands (optional), 166
Exercises, 169
Chapter 5 Graph Coloring 173
5.1 Vertex Colorings and Upper Bounds 173
Definitions and Examples, 173 173
Upper Bounds, 175
Brooks' Theorem, 178
Exercises, 180
5.2 Structure of /z-chromatic Graphs 184
Graphs with Large Chromatic Number, 184
Critical Graphs, 186
Forced Subdivisions (optional), 188
Exercises, 190
5.3 Enumerative Aspects 193
Counting Proper Colorings, 194
Chordal Graphs, 198
A Hint of Perfect Graphs, 200
Counting Acyclic Orientations (optional), 202
Exercises, 203
Chapter 6 Edges and Cycles 206
6.1 Line Graphs and Edge-coloring 206
Edge-colorings, 207
Characterization of Line Graphs (optional), 212
Exercises, 215
6.2 Hamiltonian Cycles 218
Necessary Conditions, 219
Sufficient Conditions, 221
Cycles in Directed Graphs (optional), 226
Exercises, 227
6.3 Complexity (optional) 232
Intractability, 232
Heuristics and Bounds, 235
NP-Completeness Proofs, 238
Exercises, 245
Chapter 7 Planar Graphs 247
7.1 Embeddings and Euler's Formula 247
Drawings in the Plane, 24
Dual Graphs, 250
Euler's Formula, 255
Exercises, 257
7.2 Characterization of Planar Graphs 259
Preparation for Kuratowski's Theorem, 260
Convex Embeddings, 261
Bridges and Planarity Testing (optional), 264
Exercises, 267
7.3 Parameters of Planarity 269
Coloring of Planar Graphs, 269
Edge-colorings and Hamiltonian Cycles, 274
Crossing Number, 277
Surfaces of Higher Genus (optional), 280
Exercises, 283
Chapter 8 Additional Topics (optional) 288
8.1 Perfect Graphs 288
The Perfect Graph Theorem, 289
Chordal Graphs Revisited, 293
Other Classes of Perfect Graphs, 297
Imperfect Graphs, 305
The Strong Perfect Graph Conjecture, 312
Exercises, 315
8.2 Matroids 320
Hereditary Systems and Examples, 321
Properties of Matroids, 326
The Span Function and Duality, 330
Minors and Planar Graphs, 336
Matroid Intersection, 340
Matroid Union, 343
Exercises, 347
8.3 Ramsey Theory 353
The Pigeonhole Principle Revisited, 353
Ramsey's Theorem, 355
Ramsey Numbers, 359
Graph Ramsey Theory, 361
Sperner's Lemma and Bandwidth, 364
Exercises, 369
8.4 More Extremal Problems 373
Encodings of Graphs, 374
Branchings and Gossip, 381
List Colorings and Choosability, 386
Partitions Using Paths and Cycles, 390
Circumference, 394
Exercises, 400
8.5 Random Graphs 404
Existence and Expectation, 405
Properties of Almost All Graphs, 409
Threshold Functions, 412
Evolution and Properties of Random Graphs, 415
Connectivity, Cliques, and Coloring, 420
Martingales, 423
Exercises, 429
8.6 Eigenvalues of Graphs 432
The Characteristic Polynomial, 433
Linear Algebra of Real Symmetric Matrices, 436
Eigenvalues and Graph Parameters, 439
Eigenvalues of Regular Graphs, 441
Eigenvalues and Expanders, 444
Strongly Regular Graphs, 446
Exercises, 449453
Glossary of terms
Glossary of notation
References
Author Index 498
Subject Index 503

