Pulse Width Modulation For Power Converters

Principles and Practice

D. Grahame Holmes

Monash University Melbourne, Australia

Thomas A. Lipo

University of Wisconsin Madison, Wisconsin

IEEE Series on Power Engineering, Mohamed E. El-Hawary, Series Editor

IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION

Contents

•

Preface xiii			
Acknowled	Acknowledgments xiv		
Nomenclat	urexv		
Chapter 1	Introduction to Power Electronic Converters1		
1.1	Basic Converter Topologies21.1.1Switch Constraints21.1.2Bidirectional Chopper41.1.3Single-Phase Full-Bridge (H–Bridge) Inverter		
1.2	Voltage Source/Stiff Inverters71.2.1Two-Phase Inverter Structure71.2.2Three-Phase Inverter Structure81.2.3Voltage and Current Waveforms in Square-Wave Mode9		
1.3	Switching Function Representation of Three-Phase Converters 14		
1.4	Output Voltage Control171.4.1Volts/Hertz Criterion171.4.2Phase Shift Modulation for Single-Phase Inverter171.4.3Voltage Control with a Double Bridge19		
1.5	Current Source/Stiff Inverters		
1.6	Concept of a Space Vector		
	Multilevel Inverter Topologies		
1.8	Multilevel Inverter Topologies421.8.1Diode-Clamped Multilevel Inverter421.8.2Capacitor-Clamped Multilevel Inverter491.8.3Cascaded Voltage Source Multilevel Inverter51		

•	1.8.4 Hybrid Voltage Source Inverter	4
1.9	Summary	5
Chapter	2 Harmonic Distortion	7
2.1	Harmonic Voltage Distortion Factor57	7
2.2	Harmonic Current Distortion Factor6	1
2.3	Harmonic Distortion Factors for Three-Phase Inverters	4
2.4	Choice of Performance Indicator	7
2.5	WTHD of Three-Level Inverter7	0
2.6	The Induction Motor Load7	3
÷	2.6.1 Rectangular Squirrel Cage Bars7	
	2.6.2 Nonrectangular Rotor Bars	
	2.6.3 Per-Phase Equivalent Circuit	9
2.7	Harmonic Distortion Weighting Factors for Induction Motor	~
	Load	
	 2.7.1 WTHD for Frequency-Dependent Rotor Resistance8 2.7.2 WTHD Also Including Effect of Frequency-Dependent 	2
	Rotor Leakage Inductance	4
	2.7.3 WTHD for Stator Copper Losses	
2.8	Example Calculation of Harmonic Losses	0
2.9	WTHD Normalization for PWM Inverter Supply9	1
2.1	0 Summary9	3
Chapter	3 Modulation of One Inverter Phase Leg	5
3.1	Fundamental Concepts of PWM9	6
3.2	Evaluation of PWM Schemes9	7
3.3	Double Fourier Integral Analysis of a Two-Level Pulse Width- Modulated Waveform9	9
3.4	Naturally Sampled Pulse Width Modulation10	5
	3.4.1 Sine–Sawtooth Modulation10	
4	3.4.2 Sine–Triangle Modulation	4
- 3.5	PWM Analysis by Duty Cycle Variation12	
	3.5.1 Sine-Sawtooth Modulation	
	3.5.2 Sine–Triangle Modulation	3

Contents

8

	3.6	Regular Sampled Pulse Width Modulation	
		3.6.1 Sawtooth Carrier Regular Sampled PWM	
		3.6.2 Symmetrical Regular Sampled PWM	
		3.6.3 Asymmetrical Regular Sampled PWM	
	3.7	"Direct" Modulation	
	3.8	Integer versus Non-Integer Frequency Ratios	148
	3.9	Review of PWM Variations	150
. •	3.10	Summary	152
Cha	pter 4	Modulation of Single-Phase Voltage Source Inverters	155
	4 .1	Topology of a Single-Phase Inverter	156
	4.2	Three-Level Modulation of a Single-Phase Inverter	157
	4.3	Analytic Calculation of Harmonic Losses	169
	4.4	Sideband Modulation	177
	4.5	Switched Pulse Position	183
		4.5.1 Continuous Modulation	184
		4.5.2 Discontinuous Modulation	186
	4.6	Switched Pulse Sequence	200
		4.6.1 Discontinuous PWM — Single-Phase Leg Switched.	
		4.6.2 Two-Level Single-Phase PWM	
	4.7	Summary	211
Cha	pter 5	Modulation of Three-Phase Voltage Source Inverters	215
	5.1	Topology of a Three-Phase Inverter (VSI)	215
	5.2	Three-Phase Modulation with Sinusoidal References	216
	5.3	Third-Harmonic Reference Injection	226
		5.3.1 Optimum Injection Level	
		5.3.2 Analytical Solution for Third-Harmonic Injection	230
	5.4	Analytic Calculation of Harmonic Losses	241
-	, 5 .5	Discontinuous Modulation Strategies	250
	5.6	Triplen Carrier Ratios and Subharmonics	251
	•	5.6.1 Triplen Carrier Ratios	251
		5.6.2 Subharmonics	253
		. (

٩

vii

5.7	Summary
Chapter 6	Zero Space Vector Placement Modulation Strategies
6.1	Space Vector Modulation
	6.1.1 Principles of Space Vector Modulation
6.2	Phase Leg References for Space Vector Modulation
6.3	Naturally Sampled SVM270
6.4	Analytical Solution for SVM
6.5	Harmonic Losses for SVM
6.6	Placement of the Zero Space Vector
6.7	Discontinuous Modulation
	6.7.1 120° Discontinuous Modulation
	6.7.2 60° and 30° Discontinuous Modulation
6.8	Phase Leg References for Discontinuous PWM
6.9	Analytical Solutions for Discontinuous PWM
6.10	Comparison of Harmonic Performance
6.11 •	Harmonic Losses for Discontinuous PWM
6.12	Single-Edge SVM
6.13	Switched Pulse Sequence
6.14	Summary
Chapter 7	Modulation of Current Source Inverters
7.1	Three-Phase Modulators as State Machines
7.2	Naturally Sampled CSI Space Vector Modulator
7.3	Experimental Confirmation
7.4	Summary
Chapter 8	Overmodulation of an Inverter
8.1	The Overmodulation Region
8:2	Naturally Sampled Overmodulation of One Phase Leg of an Inverter

8		Regular Sampled Overmodulation of One Phase Leg of an Inverter
8		Naturally Sampled Overmodulation of Single- and Three-Phase Inverters
8	.5	PWM Controller Gain during Overmodulation
		8.5.1 Gain with Sinusoidal Reference
		8.5.2 Gain with Space Vector Reference
		8.5.3 Gain with 60° Discontinuous Reference
		8.5.4 Compensated Modulation
8	6.6	Space Vector Approach to Overmodulation
8	3.7	Summary
Chapt		Programmed Modulation Strategies
9	9.1	Optimized Space Vector Modulation
ُ 9	0.2	Harmonic Elimination PWM
9	9.3	Performance Index for Optimality411
9	.4	Optimum PWM416
9	0.5	Minimum-Loss PWM421
9	9.6	Summary430
Chapt	ter 10	Programmed Modulation of Multilevel Converters
1	0.1	Multilevel Converter Alternatives
1	0.2	Block Switching Approaches to Voltage Control436
1	0.3	Harmonic Elimination Applied to Multilevel Inverters
		10.3.1 Switching Angles for Harmonic Elimination Assuming
		Equal Voltage Levels
	•	10.3.2 Equalization of Voltage and Current Stresses
		10.3.3 Switching Angles for Harmonic Elimination Assuming Unequal Voltage Levels
1	10.4	Minimum Harmonic Distortion
. 1	10.5	Summary
Chan	ter 11	Carrier-Based PWM of Multilevel Inverters453
•	11.1	PWM of Cascaded Single-Phase H-Bridges

ς.

	11.2	Overmodulation of Cascaded H-Bridges465
	11.3	PWM Alternatives for Diode-Clamped Multilevel Inverters467
	11.4	Three-Level Naturally Sampled PD PWM469
		11.4.1 Contour Plot for Three-Level PD PWM469
		11.4.2 Double Fourier Series Harmonic Coefficients473
		11.4.3 Evaluation of the Harmonic Coefficients
	11.5	Three-Level Naturally Sampled APOD or POD PWM
	11.6	Overmodulation of Three-Level Inverters
	11.7	Five-Level PWM for Diode-Clamped Inverters
	11.7	11.7.1 Five-level Naturally Sampled PD PWM
		11.7.2 Five-Level Naturally Sampled APOD PWM492
		11.7.3 Five-Level POD PWM
	11.8	PWM of Higher Level Inverters
	11.9	Equivalent PD PWM for Cascaded Inverters504
	11.10	Hybrid Multilevel Inverter
	11.11	Equivalent PD PWM for a Hybrid Inverter
	11.12	Third-Harmonic Injection for Multilevel Inverters
	11.13	Operation of a Multilevel Inverter with a Variable Modulation Index
	11.14	Summary
Cha		Succe Vector DWM for Multilevel Convertors 521
Cha	-	Space Vector PWM for Multilevel Converters
	12.1	Optimized Space Vector Sequences
	12.2	Modulator for Selecting Switching States
	12.3	Decomposition Method
	12.4	Hexagonal Coordinate System
	12.5	Optimal Space Vector Position within a Switching Period543
	12.6	Comparison of Space Vector PWM to Carrier-Based PWM545
	้ 12.7	Discontinuous Modulation in Multilevel Inverters
	12.7	
	12.8	Summary

Chapter 13	Implementation of a Modulation Controller	555
13.1	Overview of a Power Electronic Conversion System	556
13.2	Elements of a PWM Converter System	557
•	13.2.1 VSI Power Conversion Stage	563
	13.2.2 Gate Driver Interface	
	13.2.3 Controller Power Supply	
	13.2.4 I/O Conditioning Circuitry13.2.5 PWM Controller	
13.3	Hardware Implementation of the PWM Process	
	13.3.1 Analog versus Digital Implementation13.3.2 Digital Timer Logic Structures	
12.4		
13,4	PWM Software Implementation 13.4.1 Background Software	
ж. -	13.4.2 Calculation of the PWM Timing Intervals	
12.5	Summary	
13.5	Summary	
Chapter 14	Continuing Developments in Modulation	585
14.1	Random Pulse Width Modulation	586
14.2	PWM Rectifier with Voltage Unbalance	590
14.3	Common Mode Elimination	598
14.4	Four Phase Leg Inverter Modulation	603
14.5	Effect of Minimum Pulse Width	607
14.6	PWM Dead-Time Compensation	612
14.7	Summary	619
Appendix 1	Fourier Series Representation of a Double Variable Con- trolled Waveform	623
	Jacobi-Anger and Bessel Function Relationships	
A2.1	Jacobi–Anger Expansions	629
A2.2	Bessel Function Integral Relationships	631
Appendix 3	Three-Phase and Half-Cycle Symmetry Relationships	635

xi

Appendix 4 Overmodulation of a Single-Phase Leg637		
A4.1	Naturally Sampled Double-Edge PWM637	
	A4.1.1 Evaluation of Double Fourier Integral for Overmodulated Naturally Sampled PWM	
	A4.1.2 Harmonic Solution for Overmodulated Single-Phase Leg under Naturally Sampled PWM	
	A4.1.3 Linear Modulation Solution Obtained from Overmodulation Solution	
	A4.1.4 Square-Wave Solution Obtained from Overmodulation Solution	
A4.2	Symmetric Regular Sampled Double-Edge PWM649	
	A4.2.1 Evaluation of Double Fourier Integral for Overmodulated Symmetric Regular Sampled PWM650-	
	A4.2.2 Harmonic Solution for Overmodulated Single-Phase Leg under Symmetric Regular Sampled PWM652	
	A4.2.3 Linear Modulation Solution Obtained from Overmodulation Solution	
A4.3	Asymmetric Regular Sampled Double-Edge PWM654	
	A4.3.1 Evaluation of Double Fourier Integral for Overmodulated Asymmetric Regular Sampled PWM655	
· · ·	A4.3.2 Harmonic Solution for Overmodulated Single-Phase Leg under Asymmetric Regular Sampled PWM660	
k a	A4.3.3 Linear Modulation Solution Obtained from Overmodulation Solution	
Appendix 5 Numeric Integration of a Double Fourier Series Representa- tion of a Switched Waveform		
A5.1	Formulation of the Double Fourier Integral	
A5.2	Analytical Solution of the Inner Integral	
A5.3	Numeric Integration of the Outer Integral	
Bibliography671		
Index		