Sliding Mode Control:
Theory and Applications

Christopher Edwards

and

Sarah K. Spurgeon
Contents

Series Introduction xii

Preface xiv

1 An Introduction to Sliding Mode Control 1
 1.1 Introduction 1
 1.2 Properties of the Sliding Motion 6
 1.3 Different Controller Designs 11
 1.4 Pseudo-Sliding with a Smooth Control Action 15
 1.5 A State-Space Approach 17
 1.6 Notes and References 18

2 Multivariable Systems Theory 19
 2.1 Introduction 19
 2.2 Stability of Dynamical Systems 19
 2.2.1 Linear Time Invariant Systems 20
 2.2.2 Quadratic Stability 21
 2.3 Linear Systems Theory 25
 2.3.1 Controllability and Observability 25
 2.3.2 Invariant Zeros 27
 2.3.3 State Feedback Control 28
 2.3.4 Static Output Feedback Control 28
 2.3.5 Observer-Based Control 29
 2.4 Notes and References 30
3 Sliding Mode Control

3.1 Introduction
3.2 Problem Statement
3.3 Existence of Solution and Equivalent Control
3.4 Properties of the Sliding Motion
3.5 The Reachability Problem
 3.5.1 The Single-Input Case
 3.5.2 Single-Input Control Structures
 3.5.3 An Example: The Normalised Pendulum Revisited
 3.5.4 The Multivariable Case
3.6 The Unit Vector Approach
 3.6.1 Existence of an Ideal Sliding Mode
 3.6.2 Description of the Sliding Motion
 3.6.3 Practical Considerations
 3.6.4 Example: Control of a DC Motor
 3.6.5 Concluding Remarks
3.7 Continuous Approximations
3.8 Summary
3.9 Notes and References

4 Sliding Mode Design Approaches

4.1 Introduction
4.2 A Regular Form Based Approach
 4.2.1 Robust Eigenstructure Assignment
 4.2.2 Quadratic Minimisation
4.3 A Direct Eigenstructure Assignment Approach
4.4 Incorporation of a Tracking Requirement
 4.4.1 A Model-Reference Approach
 4.4.2 An Integral Action Approach
4.5 Design Study: Pitch-Pointing Flight Controller
 4.5.1 Model-Reference Design
 4.5.2 Integral Action Based Design
4.6 Summary
4.7 Notes and References
5 Sliding Mode Controllers Using Output Information 93

5.1 Introduction 93
5.2 Problem Formulation 93
5.3 A Special Case: Square Plants 94
5.4 A General Framework 98
 5.4.1 Hyperplane Design 99
 5.4.2 Control Law Synthesis 105
 5.4.3 Example 1 106
5.5 Dynamic Compensation 108
5.6 Dynamic Compensation (Observer Based) 111
 5.6.1 Control Law Construction 113
 5.6.2 Design Example 1 116
 5.6.3 Design Example 2: Inverted Pendulum 118
5.7 A Model-Reference System Using Only Outputs 121
 5.7.1 Aircraft Example 122
5.8 Summary 125
5.9 Notes and References 125

6 Sliding Mode Observers 127

6.1 Introduction 127
6.2 Sliding Mode Observers 127
 6.2.1 An Utkin Observer 127
 6.2.2 Example 1 129
 6.2.3 A Modification to Include a Linear Term 131
 6.2.4 A Walcott-Zak Observer 131
6.3 Synthesis of a Discontinuous Observer 133
 6.3.1 A Canonical Form for Observer Design 134
 6.3.2 Existence Conditions 136
6.4 The Walcott-Zak Observer Revisited 142
 6.4.1 Example 2: Pendulum 145
 6.4.2 Pendulum Simulation 146
6.5 Sliding Mode Observers for Fault Detection 147
 6.5.1 Reconstruction of the Input Fault Signals 148
 6.5.2 Detection of Faults at the Output 149
 6.5.3 Example: Inverted Pendulum 150
6.5.4 Simulations of Different Fault Conditions 151
6.6 Summary 153
6.7 Notes and References 154

7 Observer-Based Output Tracking Controllers 155
7.1 Introduction 155
7.2 System Description and Observer Formulation 155
7.3 An Integral Action Controller 156
 7.3.1 Nonlinear Observer Formulation (For Square Plants) 157
 7.3.2 State Feedback Integral Action Control Law (Reprise) 159
 7.3.3 Closed-Loop Analysis 160
 7.3.4 Design and Implementation Issues 166
7.4 Example: A Temperature Control Scheme 170
 7.4.1 Observer Design 170
 7.4.2 Controller Design 171
 7.4.3 Design of the Nonlinear Gain Function 172
 7.4.4 Furnace Simulations 173
7.5 A Model-Reference Approach 175
 7.5.1 Example: L-1011 Fixed-Wing Aircraft 179
7.6 Summary 181
7.7 Notes and References 181

8 Automotive Case Studies 183
8.1 Introduction 183
8.2 Automotive Actuator with Stiction 183
8.3 Robust Control of an Automotive Engine 188
 8.3.1 Controller Design Issues 190
 8.3.2 Engine Controller Design 191
 8.3.3 Implementation Results 192
8.4 Summary 197
8.5 Notes and References 197

9 Furnace Control Case Study 199
9.1 Introduction 199
9.2 Observer Design 202
9.3 Controller Design 203
9.4 Implementation Results
9.5 Summary
9.6 Notes and References

Appendices

A Mathematical Preliminaries
A.1 Mathematical Notation
A.2 Linear Algebra
 A.2.1 Vector Spaces and Linear Maps
 A.2.2 Properties of Linear Maps (Matrices)
 A.2.3 Rank and Determinant
 A.2.4 Eigenvalues, Eigenvectors and Singular Values
 A.2.5 QR Decomposition
 A.2.6 Norms, Inner Products and Projections
 A.2.7 Quadratic Forms
A.3 Notes and References

B Assorted mfiles
B.1 A Variation on the place Command
B.2 Eigenstructure Assignment: The Complex Case
B.3 World Wide Web Site

References

Index