

Pauline M. Doran

Bioprocess Engineering Principles

A Harcourt Science and Technology Company

San Diego San Francisco New York Boston London Sydney Tokyo

Contents

PREF.	ACE		2.6	Physical and Chemical Property Data	2
DADT	1 Introduction		2.7	Stoichiometry	22
PART	1 Introduction			Example 2.4: Stoichiometry of amino acid	
				synthesis	22
Chant	on 1			Example 2.5: Incomplete reaction	
Chapt				and yield	23
	Bioprocess Development:		2.8 Si	ummary of Chapter 2	24
	An Interdisciplinary Challenge			Problems	24
				References	20
1.1	Steps in Bioprocess Development:			Suggestions For Further Reading	20
	A Typical New Product From				
	Recombinant DNA		Chan	tor 2	
1.2	A Quantitative Approach		Chap		25
				Presentation and Analysis of Data	27
Chapt	er?		3.1	Errors in Data and Calculations	27
Chapt		0	3.1.1	Significant Figures	27
	Introduction to Engineering Calculation	s 9	3.1.2	Absolute and Relative Uncertainty	28
2.1	District Westerland Discount on and Helica	0	3.1.3	Types of Error	29
2.1	Physical Variables, Dimensions and Units	9	3.1.4	Statistical Analysis	29
2.1.1	Substantial Variables	10		Example 3.1: Mean and standard	
2.1.2	Natural Variables	11		deviation	30
2.1.3	Dimensional Homogeneity in Equations	11		resentation of Experimental Data	30
2.1.4	Equations Without Dimensional	10	3.3	Data Analysis	31
2.2	Homogeneity	12	3.3.1	Trends	32
2.2	Units	13	3.3.2	Testing Mathematical Models	33
2.2	Example 2.1: Unit conversion	14	3.3.3	Goodness of Fit: Least-Squares Analysis	34
2.3	Force and Weight	15	3.3.4	Linear and Non-Linear Models	35
2.4	Example 2.2: Use of g_Q	15	3.4	Graph Paper With Logarithmic	
2.4	Measurement Conventions	16		Coordinates	38
2.4.1	Density	16	3.4.1	Log-Log Plots	38
2.4.2	Specific Gravity	16	3.4.2	Semi-Log Plots	40
2.4.3	Specific Volume	16		Example 3-2: Cell growth data	41
2.4.4	Mole	16	3.5	General Procedures for Plotting Data	42
2.4.5	Chemical Composition	16	3.6	Process Flow Diagrams	42
2.4.6	Temperature	18	3.7	Summary of Chapter 3	42
2.4.7	Pressure	18		Problems	43
2.5	Standard Conditions and Ideal Gases	19		References	47
	Example 2.3: Ideal gas law	20		Suggestions for Further Reading	48

Contents vi

PART	2 Material and Energy Balances	49	5.1.1	Units	86
			5.1.2	Intensive and Extensive Properties	86
C1			5.1.3	Enthalpy	87
Chap			5.2	General Energy-Balance Equations	87
	Material Balances	51	5.2.1 5.3	Special Cases Enthalpy Calculation Procedures	88 88
4.1	Thermodynamic Preliminaries	51	5.3.1	Reference States	88
4.1.1	System and Process	51	5.3.2	State Properties	89
4.1.2	Steady State and Equilibrium	52	5.4	Enthalpy Change in Non-Reactive	
4.2	Law of Conservation of Mass	52		Processes	89
	Example 4.1: General mass-balance		5.4.1	Change in Temperature	89
	equation	53		Example 5.1: Sensible heat change with	
4.2.1	Types of Material Balance Problem	. 53		constant C	90
4.2.2	Simplification of the General Mass-		5.4.2	Change of Phase	90
	Balance Equation	53		Example 5-2: Enthalpy of condensation	91
4.3	Procedure For Material-Balance		5.4.3	Mixing and Solution	91
	Calculations	54		Example 5.3: Heat of solution	92
	Example 4.2: Setting up a flowsheet	55	5.5	Steam Tables	92
4.4	Material-Balance Worked Examples	55	5.6	Procedure For Energy-Balance Calculations	
	Example 4.3: Continuous filtration	56		Without Reaction	93
	Example 4.4: Batch mixing	59	5.7	Energy-Balance Worked Examples	
	Example 4.5: Continuous acetic acid			Without Reaction	93
	fermentation	62		Example 5-4: Continuous water heater	94
	Example 4.6: Xanthan gum production	67		Example 5-5: Cooling in downstream	
4.5	Material Balances With Recycle, By-Pass			processing	95
	and Purge Streams	72	5.8	Enthalpy Change Due to Reaction	97
4.6	Stoichiometry of Growth and Product		5.8.1	Heat of Combustion	97
	Formation	74		Example 5.6: Calculation of heat of reaction	
4.6.1	Growth Stoichiometry and Elemental		5 0 2	from heats of combustion	98
	Balances	74	5.8.2	Heat of Reaction at Non-Standard	0.0
	Example 4.7: Stoichiometric coefficients			Conditions	98
	for cell growth	76	5.9	Heat of Reaction For Processes With	00
4.6.2	Electron Balances	78	5 0 1	Biomass Production	99
4.6.3	Biomass Yield	78	5.9.1	Thermodynamics of Microbial Growth	99
4.6.4	Product Stoichiometry	79	5.9.2	Heat of Reaction With Oxygen as	100
4.6.5	Theoretical Oxygen Demand	79	502		100
4.6.6	Maximum Possible Yield	79	5.9.3	Heat of Reaction With Oxygen Not the Principal Electron Acceptor	100
	Example 4.8: Product yield and oxygen		5.10	1	100
	demand	80	5.10	Energy-Balance Equation For Cell Culture	101
4.7	Summary of Chapter 4	82	<i>5</i> 11		101
	Problems	82	5.11	Fermentation Energy-Balance Worked Examples	102
	References	85			102
	Suggestions For Further Reading	85		Example 5.7: Continuous ethanol fermentation	102
	-				102
C1			5.12	•	103
Chapt			J.12 -		
	Energy Balances	86			107
5.1	Basic Energy Concepts	86		References Suggestions For Further Reading	108 109

<u>la</u>	pter 6		7.8.1	Cell Concentration	139
	Unsteady-State Material and Energy		7.8.2	Cell Morphology	140
	Balances	110	7.8.3	Osmotic Pressure	140
			7.8.4	Product and Substrate Concentrations	140
	Unsteady-State Material-Balance		7.9	Mixing	140
	Equations	110	7.9.1	Mixing Equipment	141
	Example 6.1: Unsteady-state material		7.9.2	Flow Patterns in Agitated Tanks	143
	balance for a CSTR	111	7.9.2.1	Radial-flow impellers	144
	Unsteady-State Energy-Balance Equations	113	7.9.2.2	Axial-flow impellers	144
*,3	Solving Differential Equations	114	7.9.3	Mechanism of Mixing	144
\ <i>'</i> ,4	Solving Unsteady-State Mass Balances	115	7.9.4	Assessing Mixing Effectiveness	147
	Example 6.2: Dilution of salt solution	115		Example 7.1: Estimation of mixing time	
	Example 6.3: Flow reactor	118	7.10	Power Requirements for Mixing	150
15	Solving Unsteady-State Energy Balances	119	7.10.1	Ungassed Newtonian Fluids	150
1	Example 6.4: Solvent heater	120		Example 7.2: Calculation of power	
%%	Summary of Chapter 6	122		requirements	152
	Problems	122	7.10.2	Ungassed Non-Newtonian Fluids	153
	References	125	7.10.3	Gassed Fluids	153
	Suggestions For Further Reading	125	7.11	Scale-Up of Mixing Systems	154
			7.12	Improving Mixing in Fermenters	155
			7.13	Effect of Rheological Properties on Mixing	156
	12 Playsical Decasses	127	7.14	Role of Shear in Stirred Fermenters	156
	'3 Physical Processes	127	7.14.1	Interaction Between Cells and Turbulent	
				Eddies	157
la.	mton 7			Example 7.3: Operating conditions for	
Ia	pter 7	120		turbulent shear damage	158
	Fluid Flow and Mixing	129	7.14.2	Bubble Shear	160
,	CI (CI) CFI (1	120	7.15	Summary of Chapter 7	160
,\	Classification of Fluids	129		Problems	160
.2	Fluids in Motion	130		References	162
2.2	Streamlines	130		Suggestions For Further Reading	163
.2.2	•	130			
.2.3		131	Chant	o. 0	
'.2.4 .3	• • •	131	Chapte		
	Viscosity Momentum Transfer	132 133		Heat Transfer	164
<i>fA</i> .5	Non-Newtonian Fluids	133			
.5 .5.1	Two-Parameter Models	134	8.1	Heat-Transfer Equipment	164
.5.1		135	8.1.1	Bioreactors	164
7.5.3	•	136	8.1.2	General Equipment For Heat Transfer	165
,6	Viscosity Measurement	136	8.1.2.1	1 1	166
,6 .6.1	Cone-and-Plate Viscometer	136	8.1.2.2	Shell-and-tube heat exchangers	167
.6.2		136	8.2	Mechanisms of Heat Transfer	169
.6.3		137	8.3	Conduction	170
	Use of Viscometers With Fermentation	137	8.3.1	Analogy Between Heat and Momentum	150
.0.4	Broths	137	0 2 2	Transfer	170
	Rheological Properties of Fermentation	137	8.3.2	Steady-State Conduction	171
	Micological Floperties of Ferricitalion		8.3.3	Combining Thermal Resistances in Series	172
		130		=	
	Broths Factors Affecting Broth Viscosity	139 139	8.4 8.4.1	Heat Transfer Between Fluids Thermal Boundary Layers	173 173

Contents vm

8.4.2	Individual Heat-Transfer Coefficients	173		Example 9.1: Cell concentration in	
8.4.3	Overall Heat-Transfer Coefficient	174		aerobic culture	20
8.4.4	Fouling Factors	175	9.6	Oxygen Transfer in Fermenters	202
8.5	Design Equations For Heat-Transfer		9.6.1	Bubbles	202
	Systems	176	9.6.2	Sparging, Stirring and Medium Properties	20
8.5.1	Energy Balance	176	9.6.3	Antifoam Agents	204
	Example 8.1: Heat exchanger	177	9.6.4	Temperature	20:
	Example 8.2: Cooling coil	179	9.6.5	Gas Pressure and Oxygen Partial Pressure	205
8.5.2	Logarithmic- and Arithmetic-Mean		9.6.6	Presence of Cells	205
	Temperature Differences	180	9.7	Measuring Dissolved-Oxygen	
	Example 8.3: Log-mean temperature			Concentrations	203
	difference	180	9.8	Estimating Oxygen Solubility	200
8.5.3	Calculation of Heat-Transfer Coefficients	181	9.8.1	Effect of Oxygen Partial Pressure	207
8.5.3.1		182	9.8.2	Effect of Temperature	20
	Example 8.4: Tube-side heat-transfer		9.8.3	Effect of Solutes	207
	coefficient	182	9.9	Mass-Transfer Correlations	208
	Flow outside tubes without phase change	183	9.10	Measurement of k , a	210
8.5.3.3	Stirred liquids	183	9.10.1	Oxygen-Balance Method	210
	Example 8.5: Heat-transfer coefficient for	184	9.10.2	Dynamic Method	210
8.6	stirred vessel	184		Example 9.2: Estimating $k_L a$ using the	
6.0	Application of the Design Equations <i>Example 8.6:</i> Cooling-coil length in	104		dynamic method	212
	fermenter design	185	9.10.3	Sulphite Oxidation	213
8.6.1	Relationship Between Heat Transfer,	105	9.11	Oxygen Transfer in Large Vessels	213
0.0.1	Cell Concentration and Stirring		9.12	Summary of Chapter 9	213
	Conditions	186		Problems	214
8.7	Summary of Chapter 8	187		References	216
	Problems	187		Suggestions For Further Reading	217
	References	189			
	Suggestions For Further Reading	189	Chant	on 10	
	-		Chapt		
				Unit Operations	218
Chapte	er 9		10.1	Filtration	220
	Mass Transfer	190	10.1	Filtration Filter Aids	220 220
			10.1.1	Filtration Equipment	221
9.1	Molecular Diffusion	190			222
9.1.1	Diffusion Theory	190	10.1.3	Filtration Theory	
9.1.2	Analogy Between Mass, Heat and		10.0	Example 10.1: Filtration of mycelial broth	224
	Momentum Transfer	191	10.2	Centrifugation	225
9.2	Role of Diffusion in Bioprocessing	192	10.2.1	Centrifuge Equipment	227
9.3	Film Theory	192	10.2.2	Centrifugation Theory	228
9.4	Convective Mass Transfer	193		Example 10.2: Cell recovery in a disc-stack	220
9.4.1	Liquid-Solid Mass Transfer	194	10.2	centrifuge	229 229
9.4.2	Liquid-Liquid Mass Transfer	194	10.3 10.4	Cell Disruption The Ideal-Stage Concept	
9.4.3	Gas-Liquid Mass Transfer	196			231
9.5	Oxygen Uptake in Cell Cultures	198	10.5	Aqueous Two-Phase Liquid Extraction	231
9.5.1	Factors Affecting Cellular Oxygen	100		Example 10.3: Enzyme recovery using	222
0.5.2	Demand Overgen Transfer From Gas Bubble to	198	10.6	aqueous extraction Adsorption	233 234
9.5.2	Oxygen Transfer From Gas Bubble to	100	10.6.1	Adsorption Operations	234
	Cell	199	10.0.1	Ausorption Operations	254

10.6.2		235	11.3.3	Michaelis—Menten Kinetics	268
	Example 10.4: Antibody recovery by	225	11.3.4	Effect of Conditions on Enzyme Reaction	270
10.62	adsorption	235	11 /	Rate	270
10.6.3	Performance Characteristics of Fixed-Bed	227	11.4	Determining Enzyme Kinetic Constants	071
10 < 1	Adsorbers	237	11 / 1	From Batch Data	271
10.6.4	Engineering Analysis of Fixed-Bed	225	11.4.1	Michaelis—Menten Plot	271
10.5	Adsorbers	237	11.4.2	Lineweaver—Burk Plot	271
10.7	Chromatography	240	11.4.3	Eadie-Hofstee Plot	271
10.7.1	Differential Migration	243	11.4.4	Langmuir Plot	272
	Example 10.5: Hormone separation using	244	11.4.5	Direct Linear Plot	272
	gel chromatography	244	11.5	Kinetics of Enzyme Deactivaton	272
10.7.2	Zone Spreading	245	11.6	Example 11.5: Enzyme half-life	274
10.7.3	Theoretical Plates in Chromatography	246	11.6	Yields in Cell Culture	275
10.7.4	Resolution	247	11.6.1	Overall and Instantaneous Yields	275
10.7.5	Scaling-Up Chromatography	248	11.6.2	Theoretical and Observed Yields	276
10.8	Summary of Chapter 10	249		Example 11.6: Yields in acetic acid	
	Problems	249		production	276
	References	252	11.7	Cell Growth Kinetics	277
	Suggestions For Further Reading	252	11.7.1	Batch Growth	277
			11.7.2	Balanced Growth	278
			11.7.3	Effect of Substrate Concentration	278
PART	4 Reactions and Reactors	255	11.8	Growth Kinetics With Plasmid	
				Instability	279
				Example 11.7: Plasmid instability in	
Chapt	er 11			batch culture	281
	Homogeneous Reactions	257	1 1 Q 11./	Production Kinetics in Cell Culture	282
	Tiemegeneeus Tieueneus	237	11.9.1	Product Formation Directly Coupled	
11.1	Basic Reaction Theory	257		With Energy Metabolism	282
11.1.1	Reaction Thermodynamics	257	i^{11} $l.J.Z.$ 9	Product Formation Indirectly Coupled	
11.1.1	Example 11.1: Effect of temperature on	231		With Energy Metabolism	282
	glucose isomerisation	258	11.9.3	Product Formation Not Coupled With	
11.1.2	Reaction Yield	259		Energy Metabolism	283
11.1.2	Example 11.2: Incomplete enzyme	239	11.10	Kinetics of Substrate Uptake in Cell	
	reaction	260		Culture	283
11.1.3	Reaction Rate	260 260	11.10.1	Substrate Uptake in the Absence of	
	Reaction Kinetics	262		Product Formation	283
		262		Substrate Uptake With Product	
	Effect of Temperature on Reaction Rate	202		Formation	284
11.2	Calculation of Reaction Rates From	262	11.11	Effect of Culture Conditions on Cell	
1101	Experimental Data	262		Kinetics	285
11.2.1	Average Rate—Equal Area Method	263	11.12	Determining Cell Kinetic Parameters	
11.2.2	Mid-Point Slope Method	264		From Batch Data	285
11.3	General Reaction Kinetics For Biological		11.12.1	Rates of Growth, Product Formation	
	Systems	265		and Substrate Uptake	285
11.3.1	Zero-Order Kinetics	265		Example 11.8: Hybridoma doubling time	286
	Example 11.3: Kinetics of oxygen uptake	266	11.12.2	Λ m a x s	287
11.3.2	First-Order Kinetics	267	11.13	Effect of Maintenance on Yields	287
	Example 11.4: Kinetics of gluconic acid		11.13.1	Observed Yields	287
	production	267	11.13.2	Biomass Yield From Substrate	288

10 A)	Product Yield From Biomass	288		Example 12.5: Effect of mass transfer	
- X	A -Pttoduct Yield From Substrate	288		on bacterial denitrification	321
	Kinetics of Cell Death	289	12.6	Liquid-Solid Mass-Transfer Correlations	322
	Example 11.9: Thermal death kinetics	290	12.6.1	Free-Moving Spherical Particles	322
11.15	Summary of Chapter 11	292	12.6.2	Spherical Particles in a Packed Bed	322
11110	Problems	292	12.7	Experimental Aspects	323
	References	295	12.7.1	•	323
	Suggestions For Further Reading	295	12.7.2		323
	2.086-2.1-2.2 - 2 2.2.2.2 - 2.2.2.2.8	273	12.8	Minimising Mass-Transfer Effects	323
			12.8.1	Internal Mass Transfer	323
Chapt	er 12		12.8.2		325
omp.	Heterogeneous Reactions	297	12.9	Evaluating True Kinetic Parameters	326
	Heterogeneous Reactions	29 I	12.10	General Comments on Heterogeneous	520
12.1	Heterogeneous Reactions in		12.10	Reactions in Bioprocessing	327
12.1	Bioprocessing	297	12.11	Summary of Chapter 12	328
12.2	Concentration Gradients and Reaction	231	12.11	Problems	328
12.2		298		References	331
12.2.1	Rates in Solid Catalysts True and Observed Reaction Rates	299		Suggestions For Further Reading	332
12.2.1		299		Suggestions For Further Reading	JJ2
12.2.2	Interaction Between Mass Transfer and	200			
10.2	Reaction	300	Chapt	or 13	
12.3	Internal Mass Transfer and Reaction	300	Chapt		222
12.3.1	Steady-State Shell Mass Balance	300		Reactor Engineering	333
12.3.2	Concentration Profile: First-Order	202	12.1	Decetes Esciencia de Decesetion	222
	Kinetics and Spherical Geometry	302	13.1	Reactor Engineering in Perspective	333
	Example 12.1: Concentration profile for	202	13.2	Bioreactor Configurations	336
1000	immobilised enzyme	303	13.2.1	Stirred Tank	336
12.3.3	Concentration Profile: Zero-Order	20.4	13.2.2	Bubble Column	337
	Kinetics and Spherical Geometry	304	13.2.3	Airlift Reactor	338
	Example 12.2: Maximum particle size for	20.5	13.2.4	Stirred and Air-Driven Reactors:	2.40
	zero-order reaction	305		Comparison of Operating Characteristics	
12.3.4	Concentration Profile: Michaelis-Menten	•••	13.2.5	Packed Bed	340
	Kinetics and Spherical Geometry	306	13.2.6	FluidisedBed	340
12.3.5	Concentration Profiles in Other		13.2.7	Trickle Bed	341
	Geometries	307	13.3	Practical Considerations For Bioreactor	
	Prediction of Observed Reaction Rate	308		Construction	341
12.4	The Thiele Modulus and Effectiveness		13.3.1	Aseptic Operation	341
	Factor	309	13.3.2	Fermenter Inoculation and Sampling	343
12.4.1	First-Order Kinetics	309		Materials of Construction	343
12.4.2	Zero-Order Kinetics	311	13.3.4	Sparger Design	344
12.4.3	Michaelis-Menten Kinetics	313	13.3.5	Evaporation Control	344
	Example 12.3: Reaction rates for free and		13.4	Monitoring and Control of Bioreactors	344
	immobilised enzyme	314	13.4.1	Fermentation Monitoring	345
12.4.4	The Observable Thiele Modulus	316	13.4.2	Measurement Analysis	347
12.4.5	Weisz's Criteria	318	13.4.3	Fault Analysis	348
	Example 12.4: Internal oxygen transfer to		13.4.4	Process Modelling	348
	immobilised cells	318	13.4.5	State Estimation	349
12.4.6	Minimum Intracatalyst Substrate		13.4.6	Feedback Control	350
	Concentration	319	13.4.7	Indirect Metabolic Control	351
12.5	External Mass Transfer	319	13.4.8	Programmed Control	351

J.4.9	Application of Artificial Intelligence in		13.5.10) Eva	aluation of Kinetic and Yield	
	Bioprocess Control	351		Par	ameters in Chemostat Culture	376
.5	Ideal Reactor Operation	352	13.6	Stei	rilisation	377
.5.1 1	Batch Operation of a Mixed Reactor	353	13.6.1	Batch	n Heat Sterilisation of Liquids	377
.5.1.1	Enzyme reaction	353	13.6.2	Cor	ntinuous Heat Sterilisation of Liquids	381
	Example 13.1: Time course for batch			Exa	<i>ample 13.8:</i> Holding temperature in	
	enzyme conversion	354		a cc	ontinuous steriliser	384
	Example 13.2: Batch reaction time with		13.6.3	Filter	Sterilisation of Liquids	386
	enzyme deactivation	355	13.6.4	Steri	lisation of Air	386
3.5.1.2	2 Cell culture	355	13.7	Sur	nmary of Chapter 13	386
	Example 13-3: Batch culture time	358		Pro!	blems	387
.5.2	Total Time For Batch Reaction Cycle	358		Ref	erences	389
(,5.3	Fed-Batch Operation of a Mixed Reactor	359		Sug	gestions For Further Reading	391
i.5.4 (Continuous Operation of a Mixed Reactor	361				
.5.4.1	Enzyme reaction	362				
	Example 13.4: Immobilised-enzyme		APPE	NDI	ICES	393
	reaction in a CSTR	363				
5.4.2	Cell culture	364	Append	lix A	Conversion Factors	395
	Example 13.5: Steady-state concentrations		Append	ix B	Physical and Chemical	
	in a chemostat	366			Property Data	398
	Example 13.6: Substrate conversion and		Append	ix C	Steam Tables	408
	biomass productivity in a chemostat	367	Append	ix D	Mathematical Rules	413
5.5	Chemostat With Immobilised Cells	368			D.I Logarithms	413
5.6	Chemostat Cascade	369			D.2 Differentiation	414
5.7	Chemostat With Cell Recycle	369			D.3 Integration	415
5.8	Continuous Operation of a Plug-Flow				References	416
r	Reactor	371	Append	ix E	List of Symbols	417
13.5.8.1	Enzyme reaction	372				
	Example 13.7: Plug-flow reactor for					
	immobilised enzymes	374	INDE	X		417
5.8.2	Cell culture	375				
5.9	Comparison Between Major Modes of					
	Reactor Operation	375				