

Reinhard Brückner

Reaktionsmechanismen

Organische Reaktionen, Stereochemie, moderne Synthesemethoden

Inhalt

1	Radikalische Substitutionsreaktionen am gesättigten C-Atom	
1.1	Vorzugsgeometrien und Bindungsverhältnisse in C-Radikalen,	
	Carbenium-Ionen und Carbanionen	
	1.1.1 Vorzugsgeometrien	2
	1.1.2 Bindungsverhältnisse	2
1.2	Stabilität von Radikalen	4
	1.2.1 Reaktive Radikale	4
	1.2.2 Unreaktive Radikale	8
1.3	Relativgeschwindigkeiten analoger Radikalreaktionen	9
	1.3.1 Das Bell-Evans-Polanyi-Prinzip	9
	1.3.2 Das Hammond-Postulat	1
1.4	Allgemeines zu radikalischen Substitutionsreaktionen: Kettenreaktionen	13
1.5	Radikal Starter	15
1.6	Radikalchemie von Alkylquecksilber(II)hydriden	10
1.7	Radikalische Halogenierung von Kohlenwasserstoffen	18
	1.7.1 Einfach-und Mehrfachchlorierungen	18
	1.7.2 Regioselektivität radikalischer Chlorierungen	2
	1.7.3 Regioselektivität von radikalischen Bromierungen im Vergleich	
	zu Chlorierungen	23
	1.7.4 Geschwindigkeitsgesetz radikalischer Halogenierungen,	
	Reaktivitäts-/Selektivitäts-Prinzip	25
	1.7.5 Chemoselektivität von radikalischen Bromierungen	2
1.8	Autoxidationen	30
1.9	Defunktionalisierungen über radikalische Substitutionsreaktionen	32
1.7	1.9.1 Einfache Defunktionalisierungen	32
	1.9.2 Defunktionalisierung über 5-Hexenylradikale:	32
	Konkurrierende Fünfringbildung	3.
	Konkumerende Funitingondung	Э.
2	Nucleophile Substitutionsreaktionen am gesättigten C-Atom	38
2.1	Nucleophile und Elektrophile; Abgangsgruppen	38
2.2	Gute und schlechte Nucleophile	4(
2.3	Abgangsgruppen und Qualität von Abgangsgruppen	42
2.4	S _N 2-Reaktionen - Kinetische und stereochemische Analyse;	7.
2.7	Substituenteneffekte auf die Reaktivität	4:
	2.4.1 Energieprofil und Geschwindigkeitsgesetz von S_N 2-Reaktionen;	4.
		4:
	Reaktionsordnung	43
	2.4.2 Stereochemie von S _N 2-Substitutionen	
	2.4.3 Ein verfeinertes Übergangszustands-Modell für die S _N 2-Reaktion	
	Kreuzungsexperiment und endocyclischer Restriktionstest	4
	2.4.4 Substitutionseffekte auf die S _N 2-Reaktivität	5

2.5	S_N1-R	eaktionen - Kinetische und stereochemische Analyse;	
		tuenteneffekte auf die Reaktivität	53
	2.5.1	Energieprofil und Geschwindigkeitsgesetz von S _N 1 -Reaktionen;	
		Bodensteinsches Quasistationaritätsprinzip	53
	2.5.2	Stereochemie von S _N 1-Reaktionen; Ionenpaare	56
	2.5.3	Solvenseffekte auf die S _N 1-Reaktivität	58
	2.5.4	Substituenteneffekte auf die S _N 1-Reaktivität	60
2.6	Wann	erfolgen S_N -Reaktionen am gesättigten C-Atom nach dem S_N1 -	
	und w	ann nach dem S _N 2-Mechanismus?	64
2.7		olekulare S _N -Reaktionen, die nicht über die übliche	
	Carbei	niumion-Zwischenstufe verlaufen: Nachbargruppenbeteiligung	64
	2.7.1	Voraussetzungen für und Merkmale von S _N -Reaktionen	
		mit Nachbargruppenbeteiligung	64
	2.7.2	Geschwindigkeitserhöhung durch Nachbargruppenbeteiligung	66
	2.7.3	Stereoselektivität durch Nachbargruppenbeteiligung	67
2.8	Präpar	ativ nützliche S _N 2-Reaktionen: Alkylierungen	71
3 16	lditiona	n an die olefinische C = C-Doppelbindung	77
JAC	iditione	in an die olemische C – C-Doppelondung	, ,
3.1	Die Be	egriffe eis- und trans-Addition	78
3.2		ular I zu Stereochemie und Stereoselektiver Synthese	78
	3.2.1	Isomerie, Diastereomere/Enantiomere, Chiralität	78
	3.2.2	Chemoselektivität, Diastereoselektivität/Enantioselektivität,	
		Stereospezifität/Stereokonvergenz	80
3.3	Additio	onen, die diastereoselektiv als eis-Additionen ablaufen	83
	3.3.1	Eine dreiringbildende Cycloaddition	83
	3.3.2	Mit einer Cycloaddition verwandte dreiringbildende Additionen	
		an C=C-Doppelbindungen	85
	3.3.3	Cw-Hydratisierung von Olefinen über die Reaktionsfolge	
		Hydroborierung/Oxidation/Hydrolyse	87
	3.3.4	Heterogen katalysierte Hydrierung	95
3.4		oselektive eis-Additionen an C=C-Doppelbindungen	96
	3.4.1	Vokabular II zur Stereochemie und Stereoselektiven Synthese:	
		Topizität, Asymmetrische Synthese	97
	3.4.2	Asymmetrische Hydroborierung von achiralen Olefinen	98
	3.4.3	Gedankenexperiment I zur Hydroborierung chiraler Olefine	
		mit chiralen Boranen: Gegenseitige kinetische Resolution	99
	3.4.4	Gedankenexperimente II und III zur Hydroborierung	
		chiraler Olefine mit chiralen Boranen: Reagenzkontrolle	
		der Diastereoselektivität, matched/mismatched-Paare,	
	2.4.5	doppelte Stereodifferenzierung	101
	3.4.5	Gedankenexperiment IV zur Hydroborierung chiraler Olefine	100
	246	mit chiralen Dialkylboranen: Kinetische Racematspaltung	103
	3.4.6	Katalytische Asymmetrische Synthese: Sharpless-Oxidationen	104
25	A .1.11.4.	von Allylalkoholen	104
3.5		onen, die diastereoselektiv als fra/w-Additionen ablaufen tionen über Onium-Zwischenstufen)	106
	3.5.1	Addition von Brom	108
	J.J.1	- AWWING TOTAL DIGITAL	100

X Inhalt

	3.5.2	Bildung von Halogenhydrinen; Halogenlactonisierung und Halogenveretherung	108
	3.5.3	Solvomercurierung von Olefinen - Hydratisierung von	100
	3.3.3	C = C-Doppelbindungen durch nachfolgende Reduktion	111
3.6	Additi	ionen, die mechanismusbedingt ohne Stereokontrolle verlaufen	
		verlaufen können	113
	3.6.1	Additionen über Carbenium-Ion-Zwischenstufen	113
	3.6.2	Additionen über "Carbanion"-Zwischenstufen	115
4	β-Eli	minierungen	117
4.1	Begrif	ffliches und Konzeptionelles zu Eliminierungsreaktionen	117
	4.1.1	Die Begriffe a -, β - und 1, n-Eliminierung	117
	4.1.2	Die Begriffe syn- und anri-Eliminierung	118
	4.1.3	Wann sind stereogene sxn- bzw. a«f/-selektive Eliminierungen	110
	111	stereoselektiv?	119
	4.1.4	Bildung von regioisomeren Olefinen durch \(\mathbb{B}\)-Eliminierung: Saytzew- und Hofmann-Produkt(e)	121
	4.1.5	Der synthetische Wert von Het'/Het ² - verglichen mit	121
	4.1.3	H/Het-Eliminierungen	123
4.2	ß-Elin	ninierungen von H/Het über cyclische Ubergangszustände	124
4.3		ninierungen von H/Het über acyclische Übergangszustände:	12
		echanistischen Alternativen	127
4.4		iminierungen von H/Het und die E2/S _N 2-Konkurrenz	128
	4.4.1	Substrateffekte auf die E2/S _N 2-Konkurrenz	128
	4.4.2	Baseneffekte auf die E2/S _N 2-Konkurrenz	130
	4.4.3	Ein stereoelektronischer Effekt auf die E2/S _N 2-Konkurrenz	131
	4.4.4	Die Regioselektivität von E2-Eliminierungen	132
	4.4.5	Eintopfreaktionen vom Alkohol zum Olefin	135
4.5	E1-E	liminierung von H/Het aus R_{ten} - X und die El/S _N 2-Konkurrenz	136
	4.5.1	Energieprofile und Geschwindigkeitsgesetze	
		von El-Eliminierungen	137
	4.5.2	Die Regioselektivität von El-Eliminierungen	140
	4.5.3	El-Eliminierungen in der Schutzgruppentechnik	141
4.6		Eliminiemngen	143
	4.6.1	Unimolekulare E l _{cb} -Eliminierungen:	
		Energieprofil und Geschwindigkeitsgesetz	143
	4.6.2	Nicht-unimolekulare El _{cb} -Eliminierungen:	
	4.60	Energieprofil und Geschwindigkeitsgesetz	144
4.7	4.6.3	El _{cb} -Eliminierungen in der Schutzgruppentechnik	145
4.7	6-E111 4.7.1	ninierungen von Het'/Het ²	147
	4.7.1	Fragmentierung von ß-heterosubstituierten	147
	4.7.2	Organometall Verbindungen * Julia-Lythgoe-Synthese von trans-Oleünen	148
	4.7.2	Peterson-Olefinierung	149
	4.7.4	Oxaphosphetan-Fragmentierung, letzter Teilschritt von Wittig-	1+)
	→./. →	und Homer-Wadsworth-Emmons-Reaktion	149
	4.7.5	Corey-Winter-Reaktion	151
		•	

Inhalt XI

5	Substi	itutionsreaktionen an Aromaten	153
5.1		ophile aromatische Substitutionen über Wheland-Komplexe S_E -Reaktionen")	153
	5.1.1	Mechanismus: Substitution von H® oder (/wo-Substitution	153
	5.1.2	Thermodynamische Aspekte von Ar-S _E -Reaktionen	155
	5.1.3	Kinetische Aspekte von Ar-S _E -Reaktionen:	100
	0.1.0	Reaktivität und Regioselektivität bei der Umsetzung	
		von Elektrophilen mit substituierten Benzolen	159
5.2	Ar-S _F -	Reaktionen über Wheland-Komplexe: Einzelreaktionen	165
	5.2.1	Ar-Hal-Bindungsknüpfung durch Ar-S _E -Reaktion	165
	5.2.2	Ar-SO ₃ H-Bindungsknüpfung durch Ar-S _E -Reaktion	167
	5.2.3	Ar-NO ₂ -Bindungsknüpfung durch Ar-S _E -Reaktion	169
	5.2.4	Ar-N = N-Bindungsknüpfung durch Ar-S _E -Reaktion	170
	5.2.5	Ar-Alkyl-Bindungsknüpfungen durch Ar-S _E -Reaktion	172
	5.2.6	Ar-C(OH)-Bindungsknüpfung durch Ar-S _E -Reaktionen	
		und damit verknüpfte Folgereaktionen	178
	5.2.7	Ar-C(=O)-Bindungsknüpfung durch Ar-S _E -Reaktion	179
	5.2.8	Ar-C(=O)H-Bindungsknüpfung durch Ar-S _E -Reaktion	180
5.3	Elektr	ophile Substitutionsreaktionen an metallierten Aromaten	181
	5.3.1	Elektrophile Substitutionsreaktionen in orrto-lithiierten Benzol-	
		und Naphthalinderivaten	182
	5.3.2	Elektrophile Substitutionsreaktionen in Aryl-Grignard-	
		und Aryllithiumverbindungen, die über Arylhalogenide	
		zugänglich sind	184
	5.3.3	Elektrophile Substitutionen an Arylboronsäuren	
		und Arylboronsäureestern	186
5.4	Nucle	ophile Substitutionsreaktionen in Aryldiazoniumsalzen	188
5.5	Nucleophile Substitutionsreaktionen über Meisenheimer-		
	Komp	lex-analoge Zwischenstufen	191
	5.5.1	Mechanismus	191
	5.5.2	Präparativ interessante Reaktionsbeispiele	192
	5.5.3	Ein mechanistischer Sonderfall:	
		Alkalischmelze von Arylsulfonaten	195
5.6	Nucle	ophile aromatische Substitution über Arine, c/we-Substitution	195
	. .		
6		ophile Substitutionsreaktionen (außer durch Enolate) arboxyl-Kohlenstoff	197
6.1		haltige Substrate und ihre Reaktionsmöglichkeiten	
		ucleophilen	197
6.2		anismus, Geschwindigkeitsgesetze und Geschwindigkeit	
		ucleophilen Substitutionsreaktionen am Carboxyl-Kohlenstoff	199
	6.2.1	Mechanismus und Geschwindigkeitsgesetze von S _N -Reaktionen	
		am Carboxyl-Kohlenstoff	199
	6.2.2	S _N -Reaktionen am Carboxyl-Kohlenstoff: Der Einfluß der	
		Resonanzstabilisierung der angegriffenen C = O-Doppelbindung	
		auf die Reaktivität des Acylierungsmittels	205

XII Inhalt

	6.2.3	S _N -Reaktionen am Carboxyl-Kohlenstoff: Der Einfluß der			
		Stabilisierung der Tetraeder-Zwischenstufe auf die Reaktivität	209		
6.3	Carbo	onsäure(derivat)aktivierung	211		
	6.3.1	Aktivierung von Carbonsäuren und Carbonsäurederivaten			
		in Gleichgewichtsreaktionen	211		
	6.3.2	Umwandlung von Carbonsäuren in isolierbare Acylierungsmittel	212		
	6.3.3	Vollständige in-situ-Aktivierung von Carbonsäuren	215		
6.4	Ausgewählte S _N -Reaktionen von Heteroatom-Nucleophilen				
	am Ca	arboxyl-Kohlenstoff	217		
	6.4.1	Hydrolyse von Estern	220		
	6.4.2	Lactonbildung aus Hydroxycarbonsäuren	223		
	6.4.3	Knüpfen von Peptidbindungen	227		
	6.4.4	S _N -Reaktionen von Heteroatom-Nucleophilen			
		an Kohlensäurederivaten	229		
6.5		aktionen von Hydridüberträgern, Metallorganylen und			
		oatom-stabilisierten "Carbanionen" am Carboxyl-Kohlenstoff	232		
	6.5.1	Wann gelingen reine Acylierungen,			
		wann entstehen gleich Alkohole?	232		
	6.5.2	Acylierung von hydridübertragenden Reagenzien:			
		Reduktion von Carbonsäurederivaten zu Aldehyden	236		
	6.5.3	Acylierung von metallorganischen Verbindungen und			
		Heteroatom-stabilisierten "Carbanionen": Synthese von Ketonen	237		
		ionen von Heteroatom-Nucleophilen an Carbonylverbindunger Ieren Folgereaktionen	1 241		
7.1	Addit	ionen von Heteroatom-Nucleophilen an Heterocumulene	241		
	7.1.1	Mechanismus der Addition von Heteroatom-Nucleophilen			
		an Heterocumulene	241		
	7.1.2	Beispiele zur Addition von Heteroatom-Nucleophilen			
		an Heterocumulene	242		
7.2		ionen von Heteroatom-Nucleophilen an Carbonylverbindungen	248		
	7.2.1	Zur Gleichgewichtslage bei Additionsreaktionen	2.40		
	7.00	von Heteroatom-Nucleophilen an Carbonylverbindungen	248		
	7.2.2	Halbacetalbildung	250		
7.0	7.2.3	Oligomerisierung/Polymerisation von Carbonylverbindungen	255		
7.3		ion von Heteroatom-Nucleophilen an Carbonylverbindung	250		
	m Ko	mbination mit nachfolgenden S_N1 -Reaktionen: Acetalisierungen Mechanismus	256		
	7.3.1	Bildung von 0,0-Acetalen	256 257		
	7.3.2	=	263		
		Bildung von N,N-Acetalen	264		
7.4		ion von Stickstoffnucleophilen an Carbonylverbindungen	∠U 4		
/ . -1		mbination mit nachfolgenden E1-Eliminierungen:			
		ensationsreaktionen von Stickstoff-Nucleophilen			
		arbonylverbindungen	266		
	11111	are only 1. tromadifical	_00		

Inhalt XIII

8	Addition von H-Nucleophilen und von Metallorganylen an Carbonylverbindungen	271
8.1	Geeignete H-Nucleophile und Metallorganyle	
	und Überblick über die Struktur von Metallorganylen	271
8.2	Chemoselektivität der Addition von H-Nucleophilen	
	an Carbonylverbindungen	273
8.3	Diastereoselektivität der Addition von H-Nucleophilen	
	an Carbonylverbindungen	275
	8.3.1 Diastereoselektivität der Addition von H-Nucleophilen	
	an cyclische Ketone	276
	8.3.2 Diastereoselektivität der Addition von H-Nucleophilen	250
	in cn-chirale acyclische Carbonylverbindungen	278
	8.3.3 Diastereoselektivität der Addition von H-Nucleophilen	207
0.4	an β-chirale acyclische Carbonylverbindungen	287
8.4	Enantioselektive Addition von H-Nucleophilen	200
0.5	an Carbonylverbindungen	288
8.5	Addition von Metallorganylen an Carbonylverbindungen 8.5.1 Einfache Additionsreaktionen von Metallorganylen	292 292
	8.5.2 Enantioselektive Addition von Zinkorganylen	292
	an Carbonylverbindungen; chirale Verstärkung	297
	8.5.3 Diastereoselektive Addition von Metallorganylen	291
	an Carbonylverbindungen	299
8.6	1,4-Additionen von Organometallverbindungen an	2,,,
0.0	a,/3-ungesättigte Ketone	302
9	Umsetzung von Yliden mit gesättigten oder $a_{\lambda}\beta$ -ungesättigten Carbonylverbindungen	307
9.1	Ylide/Ylene	307
9.2	Umsetzungen von S-Yliden mit gesättigten Carbonylverbindungen	307
7.2	oder mit Michael-Akzeptoren: Dreiringbildung	309
	9.2.1 Bildungsmechanismus von Cyclopropanen und Epoxiden	309
	9.2.2 Stereoselektivität und Regioselektivität der Dreiringbildung	
	aus S-Yliden	310
9.3	Kondensation von <i>P</i> -Yliden mit Carbonylverbindungen:	
	Wittig-Reaktion	313
	9.3.1 Nomenklatur und Darstellung von P-Yliden	313
	9.3.2 Mechanismus der Wittig-Reaktion	314
9.4	Homer- Wadsworth-Emmons-Reaktion	319
	9.4.1 Homer- Wadsworth-Emmons-Reaktionen	
	mit achiralen Reaktanden	319
	9.4.2 Homer-Wittig-Emmons-Reaktionen zwischen chiralen	
	Reaktanden - ein Potpourri stereochemischer Besonderheiten	322
10	Chemie der Alkalimetall-Enolate	331
10.1	Coundlesson	221
10.1	Grundlagen 10.1.1 Formelschreibweise und Struktur von Enolaten	331 331
	10.1.1 I Officiacing weise und attaktur von Enoraten	JJ1

XIV Inhalt

	10.1.2 Darstellung von Enolaten durch Deprotonierung10.1.3 Andere Methoden der Enolat-Erzeugung	334 343
	10.1.4 Überblick über Reaktionen von Elektrophilen mit Enolaten	
	und die dabei auftretende Ambidoselektivität	345
10.2	Alkylierung von quantitativ vorliegenden Enolaten und Aza-Enolaten: Kettenverlängernde Synthese von Carbonylverbindungen	
	und Carbonsäurederivaten	347
	10.2.1 Kettenverlängernde Synthese von Carbonylverbindungen	348
	10.2.2 Kettenverländernde Synthese von Carbonsäurederivaten	355
10.3	Hydroxyalkylierung von Enolaten mit Carbonylverbindungen	
	("Aldoladdition"): Synthese von /3-Hydroxyketonen	
	und β-Hydroxyestern	361
	10.3.1 Triebkraft von Aldolreaktionen und die sich daraus ergebende	
	Produktpalette	362
	10.3.2 Stereokontrolle	363
10.4	Kondensation von Enolaten mit Carbonylverbindungen:	
	Synthese von Michael-Systemen	368
	10.4.1 Aldolkondensation	368
	10.4.2 Knoevenagel-Reaktion	372
	10.4.3 Eine Knoevenagel-Reaktion "mit Pfiff"	374
10.5	Acylierung von Enolaten	376
10.0	10.5.1 Acylierung von Esterenolaten	376
	10.5.2 Acylierung von Ketonenolaten	380
10.6	Michael-Addition von Enolaten	382
10.0	10.6.1 Einfache Michael-Additionen	382
	10.6.2 Tandemreaktionen aus Michael-Addition und Folgereaktionen	384
	10.0.2 Tandelli ediktionen aus Priender Padation and Polgereaktionen	501
11	Umlagerungen	387
11.1	Nomenklatur sigmatroper Verschiebungen	387
11.2	Molekulare Ursachen für das Auftreten von [1,2]-Umlagerungen	
11.3	Molekulare Orsachen für das Auffelen von [1,2]-Offnagerungen	388
11.5		388 390
11.5	[1,2]-Umlagerungen in Spezies mit Valenzelektronensextett	
11.5	[1,2]-Umlagerungen in Spezies mit Valenzelektronensextett 11.3.1 [1,2]-Umlagerungen in Carbenium-Ionen	390
11.4	 [1,2]-Umlagerungen in Spezies mit Valenzelektronensextett 11.3.1 [1,2]-Umlagerungen in Carbenium-Ionen 11.3.2 [1,2]-Umlagerungen in Carbenen oder Carbenoiden 	390 390
	[1,2]-Umlagerungen in Spezies mit Valenzelektronensextett 11.3.1 [1,2]-Umlagerungen in Carbenium-Ionen 11.3.2 [1,2]-Umlagerungen in Carbenen oder Carbenoiden [1,2]-Umlagerungen <i>ohne</i> Auftreten eines Sextett-Intermediats	390 390 404 408
	 [1,2]-Umlagerungen in Spezies mit Valenzelektronensextett 11.3.1 [1,2]-Umlagerungen in Carbenium-Ionen 11.3.2 [1,2]-Umlagerungen in Carbenen oder Carbenoiden [1,2]-Umlagerungen <i>ohne</i> Auftreten eines Sextett-Intermediats 11.4.1 Hydroperoxid-Umlagerungen 	390 390 404 408 409
	 [1,2]-Umlagerungen in Spezies mit Valenzelektronensextett 11.3.1 [1,2]-Umlagerungen in Carbenium-Ionen 11.3.2 [1,2]-Umlagerungen in Carbenen oder Carbenoiden [1,2]-Umlagerungen <i>ohne</i> Auftreten eines Sextett-Intermediats 11.4.1 Hydroperoxid-Umlagerungen 11.4.2 Baeyer-Villiger-Umlagerungen 	390 390 404 408 409 410
	 [1,2]-Umlagerungen in Spezies mit Valenzelektronensextett 11.3.1 [1,2]-Umlagerungen in Carbenium-Ionen 11.3.2 [1,2]-Umlagerungen in Carbenen oder Carbenoiden [1,2]-Umlagerungen <i>ohne</i> Auftreten eines Sextett-Intermediats 11.4.1 Hydroperoxid-Umlagerungen 11.4.2 Baeyer-Villiger-Umlagerungen 11.4.3 Oxidation von Organoborverbindungen 	390 390 404 408 409 410 412
	 [1,2]-Umlagerungen in Spezies mit Valenzelektronensextett 11.3.1 [1,2]-Umlagerungen in Carbenium-Ionen 11.3.2 [1,2]-Umlagerungen in Carbenen oder Carbenoiden [1,2]-Umlagerungen ohne Auftreten eines Sextett-Intermediats 11.4.1 Hydroperoxid-Umlagerungen 11.4.2 Baeyer-Villiger-Umlagerungen 11.4.3 Oxidation von Organoborverbindungen 11.4.4 Beckmann-Umlagerung 	390 390 404 408 409 410 412 414
11.4	 [1,2]-Umlagerungen in Spezies mit Valenzelektronensextett 11.3.1 [1,2]-Umlagerungen in Carbenium-Ionen 11.3.2 [1,2]-Umlagerungen in Carbenen oder Carbenoiden [1,2]-Umlagerungen ohne Auftreten eines Sextett-Intermediats 11.4.1 Hydroperoxid-Umlagerungen 11.4.2 Baeyer-Villiger-Umlagerungen 11.4.3 Oxidation von Organoborverbindungen 11.4.4 Beckmann-Umlagerung 11.4.5 Curtius-Abbau 	390 390 404 408 409 410 412 414 415
	[1,2]-Umlagerungen in Spezies mit Valenzelektronensextett 11.3.1 [1,2]-Umlagerungen in Carbenium-Ionen 11.3.2 [1,2]-Umlagerungen in Carbenen oder Carbenoiden [1,2]-Umlagerungen <i>ohne</i> Auftreten eines Sextett-Intermediats 11.4.1 Hydroperoxid-Umlagerungen 11.4.2 Baeyer-Villiger-Umlagerungen 11.4.3 Oxidation von Organoborverbindungen 11.4.4 Beckmann-Umlagerung 11.4.5 Curtius-Abbau Claisen-Umlagerung	390 390 404 408 409 410 412 414 415 416
11.4	 [1,2]-Umlagerungen in Spezies mit Valenzelektronensextett 11.3.1 [1,2]-Umlagerungen in Carbenium-Ionen 11.3.2 [1,2]-Umlagerungen in Carbenen oder Carbenoiden [1,2]-Umlagerungen ohne Auftreten eines Sextett-Intermediats 11.4.1 Hydroperoxid-Umlagerungen 11.4.2 Baeyer-Villiger-Umlagerungen 11.4.3 Oxidation von Organoborverbindungen 11.4.4 Beckmann-Umlagerung 11.4.5 Curtius-Abbau Claisen-Umlagerung 11.5.1 Klassische Claisen-Umlagerung 	390 390 404 408 409 410 412 414 415 416 416
11.4	[1,2]-Umlagerungen in Spezies mit Valenzelektronensextett 11.3.1 [1,2]-Umlagerungen in Carbenium-Ionen 11.3.2 [1,2]-Umlagerungen in Carbenen oder Carbenoiden [1,2]-Umlagerungen <i>ohne</i> Auftreten eines Sextett-Intermediats 11.4.1 Hydroperoxid-Umlagerungen 11.4.2 Baeyer-Villiger-Umlagerungen 11.4.3 Oxidation von Organoborverbindungen 11.4.4 Beckmann-Umlagerung 11.4.5 Curtius-Abbau Claisen-Umlagerung	390 390 404 408 409 410 412 414 415 416
11.4	 [1,2]-Umlagerungen in Spezies mit Valenzelektronensextett 11.3.1 [1,2]-Umlagerungen in Carbenium-Ionen 11.3.2 [1,2]-Umlagerungen in Carbenen oder Carbenoiden [1,2]-Umlagerungen ohne Auftreten eines Sextett-Intermediats 11.4.1 Hydroperoxid-Umlagerungen 11.4.2 Baeyer-Villiger-Umlagerungen 11.4.3 Oxidation von Organoborverbindungen 11.4.4 Beckmann-Umlagerung 11.4.5 Curtius-Abbau Claisen-Umlagerung 11.5.1 Klassische Claisen-Umlagerung 	390 390 404 408 409 410 412 414 415 416 416
11.4	[1,2]-Umlagerungen in Spezies mit Valenzelektronensextett 11.3.1 [1,2]-Umlagerungen in Carbenium-Ionen 11.3.2 [1,2]-Umlagerungen in Carbenen oder Carbenoiden [1,2]-Umlagerungen ohne Auftreten eines Sextett-Intermediats 11.4.1 Hydroperoxid-Umlagerungen 11.4.2 Baeyer-Villiger-Umlagerungen 11.4.3 Oxidation von Organoborverbindungen 11.4.4 Beckmann-Umlagerung 11.4.5 Curtius-Abbau Claisen-Umlagerung 11.5.1 Klassische Claisen-Umlagerung 11.5.2 Claisen-Ireland-Umlagerung	390 390 404 408 409 410 412 414 415 416 418

12.2	Uberga	ngszustände von ausgewählten einstufigen [2+4]-	
	und	[2 + 2]-Cycloadditionen	426
	12.2.1	Stereostruktur der Ubergangszustände von einstufigen	
		[2+4]-Additionen	426
	12.2.2	Grenzorbital-Wechselwirkungen in den Ubergangszuständen	
		einstufiger [2+4]-Cycloadditionen	427
	12.2.3	Grenzorbital-Wechselwirkungen im Übergangszustand	
		der unbekannten einstufigen Cycloaddition von Olefinen	
		oder Alkinen an Olefine	433
	12.2.4	Grenzorbital-Wechselwirkungen im Übergangszustand	
		von einstufigen [2 + 2]-Cycloadditionen mit Ketenen	434
12.3	Diels-A	Alder-Reaktionen	436
	12.3.1	Stereoselektivität von Diels-Alder-Reaktionen	436
	12.3.2	Substituenteneffekte auf die Geschwindigkeit	
		von Diels-Alder-Reaktionen	441
	12.3.3	Orientierungsselektivität von Diels-Alder-Reaktionen	444
	12.3.4	Einfache Diastereoselektivität von Diels-Alder-Reaktionen	447
12.4	[2 + 2]-0	Cycloadditionenmit Dichlorketen	449
12.5	1,3-dip	polare Cycloadditionen	451
	12.5.1	1,3-Dipole	451
	12.5.2	Grenzorbital-Wechselwirkungen im Übergangszustand	
		von einstufigen 1,3-dipolaren Cycloadditionen;	
		Sustmann-Klassifizierung	452
	12.5.3	1,3-dipolare Cycloadditionen von Diazoalkanen	454
	12.5.4	1,3-dipolare Cycloadditionen von Nitriloxiden	457
	12.5.5	1,3-dipolare Cycloadditionen und 1,3-dipolare Cycloreversion	
		als Teilschritte der Ozonolyse von Olefinen	459
	12.5.6	Eine trickreiche 1,3-dipolare Cycloaddition	
		von anorganischem Azid	461
12	T 11.		
13		angsmetall-vermittelte Alkenylierungen, Arylierungen	463
	una A	lkinylierungen	403
13.1	Alkeny	ylierung und Arylierung von Kupfer-gebundenen Organylresten	464
13.2		Vlierung und Arylierung von Grignard-Verbindungen	466
13.3		um-katalysierte Alkenylierungen und Arylierungen	
		ganometallverbindungen	469
		Eine Vorbemerkung: Darstellung von isomerenreinen	
		Halogenolefinen und Alkenylboronsäurederivaten, wichtigen	
		Bausteinen für Palladium-vermittelte C,C-Kupplungen	469
	13.3.2	Alkenylierung und Arylierung von Bor-gebundenen	
		Organylresten	472
	13.3.3	Alkenylierung und Arylierung von Zink-gebundenen	
		funktionalisierten Organylresten	- 477
	13.3.4	Alkenylierung und Arylierung von Cu-Acetyliden	478
13.4		lierung von Cu-Acetyliden	480
13.5		Reaktionen	481

XVI Inhalt

14	Oxidationen und Reduktionen	485
14.1	Oxidationszahlen in organisch-chemischen Verbindungen	
	und organisch-chemische Redoxreaktionen	485
14.2	Querverweise auf Redoxreaktionen, die bereits in den Kapiteln 1-13	
	besprochen wurden	490
14.3	Oxidationen	494
	14.3.1 Oxidationen in der Reihe Alkohol —* Aldehyd - *~ Carbonsäure	494
	14.3.2 Oxidative Spaltungen	501
	14.3.3 Oxidationen an Heteroatomen	511
14.4	Reduktionen	514
	14.4.1 Reduktionen $R_{s/}$, X -*- $R_{s;y}$ -H oder R_{sp} - X -*- R_{sp} - M	514
	14.4.2 Einelektronenreduktion von Carbonylverbindungen und Estern	;
	reduktive Kupplung	520
	14.4.3 Reduktionen von Carbonsäurederivaten zu Alkoholen	
	oderAminen	525
	14.4.4 Reduktion von Carbonsäurederivaten zu Aldehyden	530
	14.4.5 Reduktion von Carbonylverbindungen zu Alkoholen	530
	14.4.6 Reduktion von Carbonylverbindungen zu Kohlenwasserstoffen	530
	14.4.7 Hydrierung von Olefinen	535
	14.4.8 Reduktion von Aromaten und Alkinen	540
Name	n- und Sachverzeichnis	545
Ausga	angsmaterialien, Reagenzien, Zielmoleküle	561