## Laser-Assisted Microtechnology

Second, Updated Edition With 105 Figures and 17 Tables



## Contents

| 1. | ıntı | oauction                                                       | 1   |
|----|------|----------------------------------------------------------------|-----|
|    | 1.1  | Laser-Assisted Thin-Film Micromachining                        | . 1 |
|    | 1.2  | Laser-Assisted Microprocessing and Modification of Materials . | 3   |
|    |      | Laser Micropatterning                                          |     |
|    | 1.4  | Pulsed Laser-Plasma Deposition of Thin Films.                  | 5   |
| 2. | Las  | er-Based Equipment for Microtechnology                         | 6   |
|    | 2.1  | Principal Design                                               |     |
|    |      | of Laser-Based Microtechnological Equipment                    | 6   |
|    | 2.2  | Lasers Used in Microtechnological Systems                      |     |
|    |      | 2.2.1 Lasers for Thin-Film Machining                           | 7   |
|    |      | 2.2.2 Lasers for Microwelding and Microshaping                 |     |
|    |      | 2.2.3 Lasers for Microlithography (Micropatterning)            |     |
|    | 2.3  |                                                                |     |
|    |      | 2.3.1 The Beam-Contour (Focusing) Technique                    | .11 |
|    |      | 2.3.2 The Projection Technique                                 |     |
|    |      | 2.3.3 The Contour-Projection Technique                         |     |
|    |      | 2.3.4 The Active Projection Technique.                         |     |
|    |      | 2.3.5 Remarks on the Role of Light Coherence.                  |     |
|    | 2.4  | Laser-Beam Trajectory Control                                  |     |
|    |      | Optical Arrangement of the Visual Channel                      |     |
| 3. | Las  | ser Micromachining of Thin Films                               | 34  |
| ٠. | 3.1  |                                                                |     |
|    |      | 3.1.1 Film Heating Under the Action of Laser Radiation         |     |
|    |      | a) Absorption and Transformation of Beam Energy                |     |
|    |      | b) Film Temperature.                                           |     |
|    |      | c) Heat Transfer to the Substrate.                             |     |
|    |      | d) Lateral Heat Transfer (in the Film).                        |     |
|    |      | e) Film-to-Substrate Adhesion                                  |     |
|    |      | f) Heating Non-Uniformity Along the Film Thickness             |     |
|    |      | g) Transverse Non-Uniformity                                   | -   |
|    |      | of the Light-Beam Intensity Distribution.                      | 42  |
|    |      | h) Temperature Dependence of the Absorbance                    |     |

|    |     |        | i) Temporal Variations of the Light Flux Density       | .44  |
|----|-----|--------|--------------------------------------------------------|------|
|    |     |        | j) Cooling of Thin Films                               | 45   |
|    |     | 3.1.2  | Film Removal Under the Action of Laser Radiation       | 46   |
|    |     |        | a) Qualitative Discussion                              | 46   |
|    |     |        | b) Theoretical Analysis of the Removal Process         | 48   |
|    |     |        | c) Phenomenological Two-Phase Removal Model            | 51   |
|    |     |        | d) Experimental Investigation of TAF Removal Process . | 52   |
|    | 3.2 | Accur  | racy and Quality of Laser Thin-Film Micromachining     | 55   |
|    |     | 3.2.1  | Thermal Distortions                                    | .56  |
|    |     | 3.2.2  | Hydrodynamic Distortions                               | 58   |
|    |     | 3.2.3  | Changes of Substrate Properties                        |      |
|    |     |        | During Laser Thin Film Treatment                       | 61   |
|    |     |        | a) Sources of Cracks Formation                         | .61  |
|    |     |        | b) Melting of the Substrate Surface Layers             | 64   |
|    | 3.3 |        | nological Processes in Laser Thin-Film Machining       |      |
|    |     | 3.3.1  | Trimming of Thin Film Components                       | 67   |
|    |     |        | a) Parameter Trimming and Repair                       |      |
|    |     |        | of Hybrid Integrated Circuits                          |      |
|    |     |        | b) Tuning of Quartz Piezoelements                      |      |
|    |     |        | c) Functional Trimming of Thin Film Circuits.          | .80  |
|    |     | 3.3.2  | Shaping of Thin Films                                  | .83  |
|    |     |        | a) Photomask Repair.                                   | .83  |
|    |     |        | b) Preparation of Passive Film Circuits.               |      |
|    |     |        | c) Micromarking of Film Components                     |      |
|    |     | 3.3.3  | 8 - 3                                                  |      |
|    |     |        | a) Digital Disc Information Recording                  |      |
|    |     |        | b) Analog Data Recording.                              | 97   |
| 4. | Loc | al Las | ser-Induced Heat Treatment                             | 100  |
|    | 4.1 | Laser  | Heating of Absorbing Materials                         | 100  |
|    |     | 4.1.1  | Overall Characteristics of the Non-Demaging Heating .  | 100  |
|    |     | 4.1.2  | Excitation of Surface Electromagnetic Waves            |      |
|    |     |        | and Formation of Periodic Surface Structures           | 107  |
|    | 4.2 | Appli  | ications of Laser Heating.                             | 108  |
|    |     | 4.2.1  | Laser-Assisted Hardening.                              | 109  |
|    |     | 4.2.2  | Local Laser Alloying.                                  | J11  |
|    |     | 4.2.3  | Local Laser-Induced Synthesis of Compounds             | .114 |
|    |     | 4.2.4  | Laser Annealing of Ion-Implanted Semiconductors        | 117  |
|    |     |        | a) Characteristics of Laser Annealing                  | 118  |
|    |     |        | b) Mechanisms of Laser Annealing.                      | 127  |
|    |     |        | c) Laser Annealing Capabilities                        |      |
|    |     |        | as Compared with Other Methods                         | 129  |

| 5. | Las | er Melting and Microwelding                                   | 132 |
|----|-----|---------------------------------------------------------------|-----|
|    | 5.1 | Characteristics of the Laser-Induced Melting Process          | 133 |
|    | 5.2 | Laser-Spot Microwelding                                       | 137 |
|    |     | 5.2.1 Wire Welding                                            | 137 |
|    |     | 5.2.2 Wire Welding to Contact Plates                          | 140 |
|    |     | 5.2.3 Wire Welding to Thin Films                              | 142 |
|    |     | 5.2.4 Welding of Thin Sheets.                                 | 144 |
|    |     | 5.2.5 Laser Melt-Alloying of Metal-to-Semiconductor Contacts  | 146 |
|    |     | Laser Seam-Welding                                            |     |
|    | 5.4 | Factors Affecting the Laser-Welding Results.                  | 153 |
| 6. | Las | er Microshaping                                               | 157 |
|    |     | Laser Hole-Drilling.                                          |     |
|    |     | 6.1.1 The Process of Material Removal in Laser Hole-Drilling  |     |
|    |     | 6.1.2 Relationships for the Hole Formation in Absorbing Media |     |
|    |     | 6.1.3 Accuracy and Reproducibility                            |     |
|    |     | in Single Laser-Pulse Hole-Drilling                           | 164 |
|    |     | a) Using a Pulse of Predetermined Shape                       |     |
|    |     | and Structure                                                 | 166 |
|    |     | b) Using the Projection Technique                             | 168 |
|    |     | c) Processing in a Cylinidrical Light Tube                    | 168 |
|    |     | d) Additional Means                                           |     |
|    |     | and Procedures Increasing the Treatment Precision .           |     |
|    |     | e) Multiple-Pulse Hole Drilling.                              |     |
|    | 6.2 | Laser-Driven Materials Separation                             |     |
|    |     | 6.2.1 Laser Cutting                                           |     |
|    |     | 6.2.2 Laser Scribing                                          |     |
|    |     | 6.2.3 Laser Thermal Cleaving                                  | 183 |
| 7. | Mas | skless Laser Micropatterning                                  | 187 |
|    | 7.1 |                                                               |     |
|    |     | 7.1.1 Laser-Induced Oxidation of Thin Metal Films             | 188 |
|    |     | a) Oxidation Lithography. Accuracy and Resolution             | 189 |
|    |     | b) Application of Oxidation Lithography                       | 195 |
|    |     | 7.1.2 Laser-Induced Reduction of Metal Oxides                 | 196 |
|    |     | 7.1.3 Laser-Induced Thermal Decomposition                     |     |
|    |     | of Organometallic Compounds                                   | 199 |
|    |     |                                                               | 199 |
|    |     | , , , , , , , , , , , , , , , , , , ,                         | 204 |
|    |     | 7.1.4 Laser-Induced Liquid-Phase Electrochemical              |     |
|    |     | Deposition and Etching                                        | 208 |
|    |     | a) Denosition                                                 | 208 |

|    |       | b) Etching 2                                          | 10  |
|----|-------|-------------------------------------------------------|-----|
|    |       | 7.1.5 Thermochemical Action of Laser Radiation        |     |
|    |       | on Polymer Materials 2                                | 17  |
|    | 7.2   | Photochemical Methods of Laser Patterning 22          |     |
|    |       | 7.2.1 Laser-Induced Photo-Decomposition               |     |
|    |       | of Gas-Phase Organometallic Compounds 22              | 21  |
|    |       | 7.2.2 Selective Laser-Assisted Photo-Etching 22       | 24  |
| 8. | Pul   | ed Laser-Plasma Deposition                            |     |
|    |       | <u>-</u>                                              | 28  |
|    |       | Essentials                                            |     |
|    |       | of the Pulsed-Laser Plasma-Deposition Technique 2     | 28  |
|    | 8.2   | Characteristics                                       |     |
|    |       | of the Pulsed-Laser Plasma-Deposition Process         | 30  |
|    |       |                                                       | 30  |
|    |       | a) Free-Running Mode                                  |     |
|    |       | b) Q-Switched Mode                                    |     |
|    |       | 8.2.2 Inertial Expension of Laser-Ablation Products 2 |     |
|    |       | 8.2.3 Plasma-Substrate Interaction                    |     |
|    |       | 8.2.4 Growth Mechanism and Film Properties 2          |     |
|    | 8.3   | Typical Applications                                  |     |
|    |       | of the Pulsed-Laser Plasma-Deposition Method          | 41  |
|    |       | a) Deposition of Metals                               |     |
|    |       | b) Synthesis of Polycomponent Thin Films 2            |     |
|    |       | c) Laser-Plasma Deposition of Multilayer Structures 2 |     |
| R  | efere | nces                                                  | 47  |
| Sı | ıbjec | Index                                                 | .69 |