

Keigo Iizuka

Engineering Optics

Second Edition

With 385 Figures

mm, fit CheH\$o-

Telefax 02 MWSS

Springer-Verlag Berlin Heidelberg New York >ndon Paris Tokyo

Contents

1.	Hist	ory of Optics	1
	1.1	The Mysterious Rock Crystal Lens	1
	1.2	Ideas Generated by Greek Philosophers	3
	1.3	A Morning Star	
	1.4	Renaissance	
	1.5	The Lengthy Path to Snell's Law.	.10
	1.6	A Time Bomb to Modern Optics.	.11
	1.7	Newton's Rings and Newton's Corpuscular Theory.	.13
	1.8	Downfall of the Corpuscle and Rise of the Wave.	
	1.9	Building Blocks of Modern Optics	
	1.10	Quanta and Photons.	21
	1.11	Reconciliation Between Waves and Particles	
		Ever Growing Optics.	
2.	Mat	hematics Used for Expressing Waves	27
	2.1	Spherical Waves	27
	2.2	Cylindrical Waves	. 29
	2.3	Plane Waves	30
	2.4	Interference of Two Waves.	34
	2.5	Spatial Frequency	. 36
	2.6	The Relationship Between Engineering Optics and	
		Fourier Transforms	. 37
	2.7	Special Functions Used in Engineering Optics and	
		Their Fourier Transforms	40
		2.7.1 The Triangle Function	40
		2.7.2 The Sign Function	
		2.7.3 The Step Function	
		2.7.4 The Delta Function	
		2.7.5 The Comb Function	
	2.8	Fourier Transform in Cylindrical Coordinates.	
		2.8.1 Hankel Transform	
		2.8.2 Examples Involving Hankel Transforms	
	2.9	A Hand-Rotating Argument of the Fourier Transform	
	Drob	lama	

37	a , ,
X	Contents

3.	Basi	ic Theory of Diffraction	55
		Kirchhoff s Integral Theorem.	
	3.2	Fresnel-Kirchhoff Diffraction Formula	
	3.3	Fresnel-Kirchhoff s Approximate Formula	
	3.4	Approximation in the Fraunhofer Region	
	3.5	Calculation of the Fresnel Approximation	65
	3.6	One-Dimensional Diffraction Formula	
	3.7	The Fresnel Integral	
	Prob	olems	
4	Dwa	otical Evanuelas of Diffraction Theory	77
4.	4.1	ctical Examples of Diffraction Theory	/ /
	4.1		77
	4.2	Edge Diffraction Diffraction from a Periodic Array of Slits	02 86
	4.3	Video Disk System.	90
	4.4	4.4.1 Reflection Grating	
		4.4.2 Principle of the Video Disk System.	
	4.5	Diffraction Pattern of a Circular Aperture	01
	4.6	One-Dimensional Fresnel Zone Plate	
	4.7	Two-Dimensional Fresnel Zone Plate.	
		olems.	
	1100	70110	.101
5.	Geo	metrical Optics	10!
	5.1	Expressions Frequently Used for Describing the Path	
		of Light.	.10!
		5.1.1 Tangent Lines	
		5.1.2 Curvature of a Curve.	
		5.1.3 Derivative in an Arbitrary Direction and	
		Derivative Normal to a Surface	10'
	5.2	Solution of the Wave Equation in Inhomogeneous Media	
		by the Geometrical-Optics Approximation	1L
	5.3	Path of Light in an Inhomogeneous Medium.	.11<
	5.4	Relationship Between Inhomogeneity and Radius of	
		Curvature of the Optical Path	
	5.5	Path of Light in a Spherically Symmetric Medium	
	5.6	Path of Light in a Cylindrically Symmetric Medium	.12
	5.7	Selfoc Fiber	
		5.7.1 Meridional Ray in Selfoc Fiber	
		5.7.2 Skew Ray in Selfoc Fiber.	
	5.8	Quantized Propagation Constant	
		5.8.1 Quantized Propagation Constant in a Slab Guide	13
		5.8.2 Quantized Propagation Constant in Optical Fiber	13
	5.9	Group Velocity.	
	Prob	olems	.14

		Contents	XI
6.	Lens	ses	.145
	6.1	Design of Piano-Convex Lens.	.145
	6.2	Consideration of a Lens from the Viewpoint of Wave Optics.	
	6.3	Fourier Transform by a Lens.	
		6.3.1 Input on the Lens Surface	148
		6.3.2 Input at the Front Focal Plane	
		6.3.3 Input Behind the Lens	
		6.3.4 Fourier Transform by a Group of Lenses.	
		6.3.5 Effect of Lateral Translation of the Input Image	
		on the Fourier-Transform Image	.154
	6.4	Image Forming Capability of a Lens from the Viewpoint	
		of Wave Optics.	156
	6.5	Effects of the Finite Size of the Lens.	
		6.5.1 Influence of the Finite Size of the Lens on the Quality	
		of the Fourier Transform.	159
		6.5.2 Influence of the Finite Size of the Lens on the Image	
		Quality.	161
	Prob	lems	
	1100		.105
7.	The	Fast Fourier Transform (FFT)	
	7.1	What is the Fast Fourier Transform?	.169
	7.2	FFT by the Method of Decimation in Frequency	.172
	7.3	FFT by the Method of Decimation in Time.	.180
	7.4	Values of W ^k	184
	Prob	lems	.185
n	TT - 1 -	graphy	107
δ.			
	8.1	Pictorial Illustration of the Principle of Holography.	
	8.2	Analytical Description of the Principle of Holography	189
	8.3	Relationship Between the Incident Angle of the	
		Reconstructing Beam and the Brightness of the	10#
		Reconstructed Image	
	8.4	Wave Front Classification of Holograms.	
		8.4.1 Fresnel Hologram.	
		8.4.2 Fourier Transform Hologram	
		8.4.3 Image Hologram	
		8.4.4 Lensless Fourier Transform Hologram	
	8.5	Holograms Fabricated by a Computer	
	8.6	White-Light Hologram.	
	8.7	Speckle Pattern	
	8.8	Applications of Holography.	
		8.8.1 Photographs with Enhanced Depth of Field.	
		8.8.2 High-Density Recording	
		8.8.3 Optical Memory for a Computer	
		8.8.4 Holographic Disk	215

XII Contents	
--------------	--

		8.8.5 Laser Machining	21(
		8.8.6 Observation of Deformation by Means of an	(
		Interferometric Hologram	21"
		8.8.7 Detection of the Difference Between Two Pictures	21!
		8.8.8 Observation of a Vibrating Object.	
		8.8.9 Generation of Contour Lines of an Object.	22
	Prob	lems	
0		oratory Procedures for Fabricating Holograms	
7.	9.1	Isolating the Work Area from Environmental Noise.	22
	9.1		
	9.2	Necessary Optical Elements for Fabricating Holograms 9.2.1 Optical Bench	22
		9.2.2 Laser.	
		9.2.3 Beam Director.	
		9.2.4 Spatial Filter.	
		9.2.5 Beam Splitter9.2.6 Photographic-Plate Holder	22
	0.2	9.2.7 Film. Photographic Illustration of the Experimental Procedures	∠∠
	9.3		22
	0.4	for Hologram Fabrication	
	9.4	Exposure Time.	
	9.5	Dark-Room Procedures	
		9.5.1 Developing	
		9.5.2 Stop Bath	
		9.5.3 Fixer	
		9.5.4 Water Rinsing.	
		9.5.5 Drying	
	0.6	9.5.6 Bleaching	
	9.6	Viewing the Hologram	2.
10.	Anal	ysis of the Optical System in the Spatial Frequency Domain	2
	10.1	Transfer Function for Coherent Light	2
		10.1.1 Impulse Response Function	2
		10.1.2 Coherent Transfer Function (CTF)	
	10.2	Spatial Coherence and Temporal Coherence.	
		Differences Between the Uses of Coherent and	
		Incoherent Light	2
	10.4	Transfer Function for Incoherent Light.	
	10.5	Modulation Transfer Function (MTF)	2
	10.6	Relationship Between MTF and OTF.	2
	Prob	olems	2
11	Ont	igal Signal Progossing	2
11.		ical Signal Processing Characteristics of a Photographic Film	
	11.2	Basic Operations of Computation by Light	.∠ T
		11.2.1 Operation of Addition and Subtraction	1-

				Contents	XIII
		11.2.2	Operation of Multiplication		260
			Operation of Division		
			Operation of Averaging		
		11.2.1	Operation of Differentiation.		264
	113	Ontica	Il Signal Processing Using Coherent Light		265
	11.5		Decoding by Fourier Transform.		
			Inverse Filters.		
			Wiener Filter.		
			A Filter for Recovering the Image from a		200
		11.5.4	Periodically Sampled Picture		270
		1125	Matched Filter		
	11 /				
			lution Filter		
	11.5		l Signal Processing Using Incoherent Light		
			The Multiple Pinhole Camera		
			Time Modulated Multiple Pinhole Camera		284
		11.5.3	Low-Pass Filter Made of Randomly Distrib		20.4
			Small Pupils		
			rent Light Matched Filter		
			thmic Filtering		
	11.8		graphy.		
			Planigraphic Tomography.		
			Computed Tomography (CT).		
	Prob	lems			311
12.	App	lication	s of Microwave Holography		313
			ding Microwave Field Intensity Distributions		
			Scanning Probe Method		
			Method Based on Changes in Color Induced		
			Microwave Heating		314
		12.1.3	Method by Thermal Vision		
			Method by Measuring Surface Expansion		
	12.2		wave Holography Applied to Diagnostics		.510
	12.2	1,11010	and Antenna Investigations.		319
		12.2.1	"Seeing Through" by Means of Microwave		517
			Holography.		319
		1222	Visualization of the Microwave Phenomena		320
			Subtractive Microwave Holography.		
		12.2.3	Holographic Antenna		321
			A Method of Obtaining the Far-Field Patter		322
			the Near Field Pattern.		224
	12.2		ooking Synthetic Aperture Radar		
	12.3				321
			Mathematical Analysis of Side Looking Syn		220
	10.4		Aperture Radar		
	12.4		RadarHologram Matrix		
		12.4.1	HOIOGTAM MIAITIX		333

XIV	(Сc	ont	ten	ts

	r Optical Communication	
13.1	Advantages of Optical Fiber Systems.	
	13.1.1 Large Information Transmission Capability	.34^
	13.1.2 Low Transmission Loss	
	13.1.3 Non-Metallic Cable	
13.2	Optical Fiber	. 34!
13.3	Dispersion of the Optical Fiber	. 34'
13.4	Fiber Transmission Loss Characteristics	. 34'
13.5	Types of Fiber Used for Fiber Optical Communication	35i
13.6	Receivers for Fiber Optical Communications	.35
	13.6.1 PIN Photodiode	35
	13.6.2 Avalanche Photodiode	. 35
	13.6.3 Comparison Between PIN Photodiode and APD	
13.7	Transmitters for Fiber Optical Communications	35
	13.7.1 Light Emitting Diode (LED).	
	13.7.2 Laser Diode (LD)	
	13.7.3 Laser Cavity and Laser Action	
	13.7.4 Temperature Dependence of the Laser Diode (LD)	
	13.7.5 Comparison Between LED and LD	
13.8	Connectors, Splices, and Couplers	
	13.8.1 Optical Fiber Connector.	3£
	13.8.2 Splicing	
	13.8.3 Fiber Optic Couplers.	
13.9	Wavelength Division Multiplexing (WDM).	
	Optical Attenuators.	
10111	Systems.	3'
Proh	lems	
1100		5
	etro and Accousto Optics	
	Propagation of Light in a Uniaxial Crystal.	
14.2	Field in an Electrooptic Medium	. 3
	14.2.1 Examples for Calculating the Field in an	
	Electrooptic Medium	
	14.2.2 Applications of the Electrooptic Bulk Effect	3
14.3	Elastooptic Effect	
	14.3.1 Elastooptic Effect in an Isotropic Medium	
	14.3.2 Elastooptic Effect in an Anisotropic Medium	2
14.4	Miscellaneous Effects.	\boldsymbol{A}
	14.4.1 Optical Activity	t-
	14.4.2 Faraday Effect	L
	14.4.3 Other Magnetooptic Effects	
	14.4.4 Franz-Keldysh Effect	<•
Duch		4

Co	ontents XV
15. Integrated Optics	408
15.1 Analysis of the Slab Optical Guide	408
15.1.1 Differential Equations of Wave Optics.	
15.1.2 General Solution for the TE Modes.	
15.1.3 Boundary Conditions.	
15.1.4 TM Modes	
15.1.5 Treatment by Geometrical Optics.	
15.1.6 Comparison Between the Results	
by Geometrical Optics and by Wave Optics.	418
15.2 Coupled-Mode Theory	
15.3 Basic Devices in Integrated Optics	
15.3.1 Directional Coupler Switch	
15.3.2 Reversed <i>Afi</i> Directional Coupler	
15.3.3 Tunable Directional Coupler Filter	
15.3.4 Y Junction	
15.3.5 Mach-Zehnder Interferometric Modulator	
15.3.6 Waveguide Modulator	
15.3.7 Acoustooptic Modulator	
15.4 Bistable Optical Devices	
15.4.1 Optically Switchable Directional Coupler	
15.4.2 Optical Triode	
15.4.3 Optical AND and OR Gates.	
15.4.4 Other Types of Bistable Optical Devices	
15.4.5 Self-Focusing Action and Optical Bistability.	
15.5 Consideration of Polarization	
15.6 Integrated Optical Lenses and the Spectrum Analyzer	454
15.6.1 Mode Index Lens	455
15.6.2 Geodesic Lens	456
15.6.3 Fresnel Zone Lens	
15.6.4 Integrated Optical Spectrum Analyzer	458
15.7 Methods of Fabrication	459
15.7.1 Fabrication of Optical Guides	459
15.7.2 Fabrication of Patterns	
15.7.3 Summary of Strip Guides	463
15.7.4 Summary of Geometries of Electrodes	464
Problems	465
References	
Subject Index	