

Bertold Sprenger

Umweltmikrobiologische Praxis

Mikrobiologische und biotechnische Methoden und Versuche

Mit 42 Abbildungen

Inhaltsverzeichnis

A	Einrichtungen und Geräte im Mikrobiologielabor	1
1	Sicherheit im Labor	
1.1	Sicherheitseinrichtungen	
1.1.1	Chemikalienschrank	
1.1.2	Abzug	
1.1.3	Reinraum-Werkbank	
1.1.4	Entsorgungsbehälter	
1.1.5	Allgemeine Sicherheitseinrichtungen	
1.1.6	Persönliche Schutzausrüstung	
1.2	Sicheres Verhalten im Labor	10
2	Mikrobiologische Arbeitsgeräte	13
2.1	Optische Geräte.	
2.1.1	Mikroskop.	
2.1.2	Fotometer	
2.2	Mechanische Geräte	
2.2.1	Schüttelmaschine	
2.2.2	Magnetrührer	
2.2.3	Bioreaktor	
2.2.4	Vibromischer	
2.2.5	Zentrifuge	27
2.3	Thermische Geräte	
2.3.1	Autoklav	28
2.3.2	Trockenschrank	
2.3.3	Brutschrank	31
2.3.4	Kühlschrank	31
2.3.5	Bunsenbrenner	32
2.4	Chemisch-physikalische Meßgeräte	34
2.4.1	pH-Meter	
2.4.2	•	
2.4.3	TOC-Meßgerät	38
	=	

2.5	Glasgeräte	40
2.6	Kleingeräte	42
2.7	Waagen	43
В	Häufig genutzte Arbeitsmethoden	
_	und Medien in der Umweltmikrobiologie	45
1	Erstellen von Medien	
1.1	Erstellen von Flüssigmedien	
1.2	Erstellen von Agar-Medien	
1.2.1	Agarplatten in Petrischalen	
1.2.2	Schrägagar-Röhrchen.	50
2	Kulturmethoden	
2.1	Standkultur	
2.2	Schüttelkultur	
2.3	Kulturen auf Agar-Nährmedien	53
3	Umgang mit beimpften Medien	54
3.1	Beschriften von Glas- und Kunststoffgefäßen	54
3.2	Anlegen und Bebrüten von Kulturen	
3.3	Lagern von Medien und Kulturen	56
4	Wichtige Medien in der Mikrobiologie	58
4.1	Vollmedien	
4.1.1	Standard-1-Medium	58
4.1.2	PC-Medium	59
4.1.3	R2A-Medium.	59
4.1.4	Malz-Medium	
4.2	Synthetische Medien	
4.2.1	Nährsalzlösung	
4.2.2	Anreicherungs-Zusätze	
4.3	Vitaminlösung	
4.4	Spurenelementlösung	62
5	Wichtige Methoden in der Mikrobiologie	63
5.1	Anlegen von Präparaten zur Mikroskopie	63
5.1.1	Herstellen eines einfachen Flüssigpräparates	
5.1.2	Herstellen von gefärbten Präparaten	
5.1.3	Mikroskopieren der Präparate mit und ohne Immersionsöl	65
5.2	Sterilfiltration	66
5.3	Beimpfen von flüssigen Medien	
5.4	Beimpfen von Agarmedien	67

5.4.1	Einfacher Ausstrich mit der Impföse	67
5.4.2	Vereinzelungsausstrich mit der Impföse	68
5.4.3	Ausspateln auf Agaroberfläche mit Glasspatel	69
5.4.4	Anlegen einer Schrägagar-Kultur	
C	Praktikumsversuche	71
1	Anreicherung und Isolierung von Mikroorganismen	70
1.1	aus festen und flüssigen Probenmaterialien	
1.1 1.2	Einführung und Zielvorgabe	
1.2.1	Versuchsdurchführung Probennahme und Probenbehandlung	
1.2.1	Anreicherung von phenolabbauenden Mikroorganismen	
1.2.2	Vereinzelung der Anreicherungskultur	
1.2.3	Anlegen einer Subkultur in Flüssigmedium	
1.2.5	Anlegen einer Reinkultur als Schrägagar-Kultur	
1.3	Aufgaben	
1.3	Fragen zu Anreicherung und Isolierung von	
1	Mikroorganismen aus der Umwelt	78
2	Quantifizierung von Mikroorganismen	
	aus Probenmaterial	
2.1	Einführung und Zielvorgabe	
2.2	Versuchsdurchführung	
2.2.1	Probennahme und Probenbehandlung	
2.2.2	Anlegen einer Verdünnungsreihe	
2.2.3	Mikroskopische Bewertung der Zellzahl	
2.2.4	Ausspatelung auf einer Agarplatte mit Vollmedium	
2.2.5	Ausspatelung auf einer "Diesel-Agarplatte"	
2.2.6	Bestimmung des Feuchtgewichtes von Biomasse	
2.2.7	Bestimmung des Trockengewichtes von Biomasse	
2.3	Aufgaben	
2.4	Fragen zur Quantifizierung von Zellzahl und Biomasse	86
3	Erstellen eines Abbauspektrums	87
3.1	Einführung und Zielvorgabe	87
3.2	Versuchsdurchführung	88
3.2.1	Anlegen von Kulturen auf Agarplatten	
3.2.2	Anlegen von Schüttelkulturen	89
3.3	Aufgaben	90
3.4	Fragen zur qualitativen Abbauleistung	
	von Mikroorganismen	90

4	Stoffabbau und Zellentwicklung	
	in einem phenolhaltigen Modellabwasser	91
4.1	Einführung und Zielvorgabe	91
4.2	Versuchsdurchführung	94
4.2.1	Anlegen einer Schüttelkultur mit phenolabbauenden	
	Bakterien und Modellabwasser	94
4.2.2	Bestimmung der Phenolkonzentration als Phenol-Index	94
4.2.3	Bestimmung der Biomasseentwicklung	99
4.3	Aufgaben	100
4.4	Fragen zur Biomasse- und Substratänderung in	
	einfacher Batch-Kultur	100
5	Stoffabbau und Zellentwicklung	
	in einem Zweikomponenten-Modellabwasser mit Bakterien	
	und Hefen als Mischkultur	102
5.1	Einführung und Zielvorgabe	102
5.2	Versuchsdurchführung	103
5.2.1	Anlegen einer Vorkultur aus Saccharomyces cerevisiae	
	in Glukosemedium.	104
5.2.2	Anlegen einer Vorkultur mit einem phenolabbauenden	
	Bakterium in Phenol-Medium.	104
5.2.3	Quantifizierung der Organismen und Erstellung einer	
	definierten Mischkultur	
5.2.4	Aufbau eines einfachen Blasensäulen-Reaktors.	
5.2.5	Erfassung der Zucker- und Phenolkonzentration	
5.2.6	Erfassung des Hefe- und Bakterienwachstums	
5.3	Aufgaben	107
5.4	Fragen zum Stoffabbau und zur Zellentwicklung in	
	einem Zweikomponenten-System in Batch-Kultur	107
6	Stoffabbau und Biomasseentwicklung	
	in einem realen Abwasser	
6.1	Einführung und Zielvorgabe	
6.2	Versuchsdurchführung	
6.2.1	Beschaffung und Transport des Abwassers	
6.2.2	Aufbau eines Blasensäulen-Reaktors	
6.2.3	Erfassung der Biomasseentwicklung	
6.2.4	Erfassung der CSB/TOC-Konzentration	
6.2.5	Mikroskopische Beobachtung des Prozesses	
6.3	Aufgaben	112
6.4	Fragen zum Stoffabbau und zur Biomasseentwicklung	
	in einem realen Abwasser in Batch-Kultur	112

7	Stoffabbau und Zellentwicklung in einem phenolhaltigen	
	Modellabwasser in kontinuierlicher Kultur	113
7.1	Einführung und Zielvorgabe	113
7.2	Versuchsdurchführung	115
7.2.1	Erstellung und Lagerung des Modellabwassers.	115
7.2.2	Aufbau einer einfachen Bioreaktoranlage mit	
	kontinuierlicher Betriebsweise.	116
7.2.3	Erstellen einer Inokulumskultur.	119
7.2.4	Einfahren der Anlage	
7.2.5	Betrieb der kontinuierlichen Kultur bis zur	
	Auswaschverdünnung	119
7.2.6	Erfassung der Zellentwicklung	
7.2.7	Erfassung der Phenolkonzentration	
7.3	Aufgaben	
7.4	Fragen zur kontinuierlichen Einkomponenten-Kultur	
8	Stoffabbau und Zellentwicklung in einem	
	Zweikomponenten-Modellabwasser in kontinuierlicher	
	Kultur mit Bakterien und Hefen	122
8.1	Einführung und Zielvorgabe	
8.2	Versuchsdurchführung	
8.2.1	Herstellung und Lagerung des Modellabwassers	
8.2.2	Erstellen der Inokulumskultur	124
8.2.3	Aufbau eines kontinuierlich arbeitenden Bioreaktors	124
8.2.4	Einfahren des Bioreaktors mit phenolabbauenden Bakterien	125
	und Phenol als einziger Kohlenstoffquelle.	125
8.2.5	Kontinuierlicher Betrieb nach Hefezugabe mit	
	Zweikomponenten-Modellabwasser	125
8.2.6	Erfassung des pH-Wertes	
8.2.7	Erfassung der Hefe- und Bakterienzellzahl	126
8.2.8	Erfassung der Glukose- und Phenolkonzentration	126
8.3	Aufgaben	126
8.4	Fragen zur kontinuierlichen Kultur im	
	Zweikomponentensystem	126
9	Stoffabbau und Biomasseentwicklung	
	bei der kontinuierlichen Abwasserbehandlung	128
9.1	Einführung und Zielvorgabe	
9.2	Versuchsdurchführung	
9.2.1	Beschaffung, Transport und Lagerung des Abwassers	
9.2.2	Aufbau einer Abwasserbehandlungsanlage nach	
	OECD-Vorgabe	130
9.2.3	Einfahren der Anlage.	
924	<u> </u>	

9.2.5	Erfassung der CSB/TOC-Konzentration	132
9.2.6	Mikroskopische Beobachtung der Biomasse	133
9.3	Aufgaben	133
9.4	Fragen zur mikrobiologischen Abwasserbehandlung	
D	Anregungen zu weiterführenden Versuchen	136
1	Biologische Behandlung kontaminierter Böden	137
1.1	Einführung	
1.2	Mineralölabbau in sandigen Böden	138
1.3	Zellzahlentwicklung bei der Bodenbehandlung	141
1.4	Bestimmung der Bodenatmung	144
2	Biologische Abfallbehandlung	
2.1	Einführung	
2.2	Kompostierung organischer Abfälle	148
2.3	Feststellung der mikrobiellen Materialzerstörung	150
3	Anaerobe Techniken im Umweltschutz	153
3.1	Einführung.	
3.2	Anaerobe Abfallbehandlung	
3.3	Anaerobe Abwasserbehandlung	157
4	Mikrobiologische Metallentfernung	160
4.1	Einführung	160
4.2	Biosorption von Metallen	161
4.3	Laugung von Metallen	162
5	Toxizitätsuntersuchungen mit mikrobiellen Indikatoren	165
5.1	Einführung	
5.2	Biolumineszenstest	166
5.3	Pseudomonas- Wachstumshemmtest	167
Lite	raturverzeichnis	171
Sach	register	175