Introduction to Structural Dynamics and Aeroelasticity

Second Edition

Dewey H. Hodges

Georgia Institute of Technology

G. Alvin Pierce

Georgia Institute of Technology

Contents

Figures					
Tables					
For	Foreword				
1	Inte	roduction	1		
1	mu	oduction	1		
2	Me	chanics Fundamentals	6		
	2.1	Particles and Rigid Bodies	7		
		2.1.1 Newton's Laws	7		
		2.1.2 Euler's Laws and Rigid Bodies	8		
		2.1.3 Kinetic Energy	8		
		2.1.4 Work	9		
		2.1.5 Lagrange's Equations	9		
	2.2	Modeling the Dynamics of Strings	10		
		2.2.1 Equations of Motion	10		
		2.2.2 Strain Energy	13		
		2.2.3 Kinetic Energy	14		
		2.2.4 Virtual Work of Applied, Distributed Force	15		
	2.3	Elementary Beam Theory	15		
		2.3.1 Torsion	15		
		2.3.2 Bending	18		
	2.4	Composite Beams	20		
		2.4.1 Constitutive Law and Strain Energy for Coupled Bending			
		and Torsion	21		
		2.4.2 Inertia Forces and Kinetic Energy for Coupled Bending			
		and Torsion	21		
		2.4.3 Equations of Motion for Coupled Bending and Torsion	22		
	2.5	The Notion of Stability	23		
	2.6	Systems with One Degree of Freedom	24		
		2.6.1 Unforced Motion	24		
		2.6.2 Harmonically Forced Motion	26		

Contents

	2.7	Epilogue	28
		Problems	29
3	Str	actural Dynamics	30
	3.1	Uniform String Dynamics	31
		3.1.1 Standing Wave (Modal) Solution	31
		3.1.2 Orthogonality of Mode Shapes	36
		3.1.3 Using Orthogonality	38
		3.1.4 Traveling Wave Solution	41
		3.1.5 Generalized Equations of Motion	44
		3.1.6 Generalized Force	48
		3.1.7 Example Calculations of Forced Response	50
	3.2	Uniform Beam Torsional Dynamics	55
		3.2.1 Equations of Motion	56
		3.2.2 Boundary Conditions	57
		3.2.3 Example Solutions for Mode Shapes and Frequencies	62
		3.2.4 Calculation of Forced Response	69
	3.3	Uniform Beam Bending Dynamics	70
		3.3.1 Equation of Motion	70
		3.3.2 General Solutions	71
		3.3.3 Boundary Conditions	72
		3.3.4 Example Solutions for Mode Shapes and Frequencies	80
	~ .	3.3.5 Calculation of Forced Response	92
	3.4	Free Vibration of Beams in Coupled Bending and Torsion	92
		3.4.1 Equations of Motion	92
	2.5	3.4.2 Boundary Conditions	93
	3.5	Approximate Solution Techniques	94
		3.5.1 The Ritz Method3.5.2 Galerkin's Method	94 101
		3.5.3 The Finite Element Method	101
	26	Epilogue	115
	5.0	Problems	115
			110
4	Sta	tic Aeroelasticity	127
	4.1	Wind-Tunnel Models	128
		4.1.1 Wall-Mounted Model	128
		4.1.2 Sting-Mounted Model	131
		4.1.3 Strut-Mounted Model	134
		4.1.4 Wall-Mounted Model for Application to Aileron Reversal	135
	4.2	Uniform Lifting Surface	139
		4.2.1 Steady-Flow Strip Theory	140
		4.2.2 Equilibrium Equation	141
		4.2.3 Torsional Divergence	142
		4.2.4 Airload Distribution	145

Contents

	4.3	4.2.5 Aileron Reversal4.2.6 Sweep Effects4.2.7 Composite Wings and Aeroelastic TailoringEpilogueProblems	148 153 163 167 168	
5	Aer	oelastic Flutter	175	
	5.1	Stability Characteristics from Eigenvalue Analysis	176	
	5.2	Aeroelastic Analysis of a Typical Section	182	
	5.3	Classical Flutter Analysis	188	
		5.3.1 One-Degree-of-Freedom Flutter	189	
		5.3.2 Two-Degree-of-Freedom Flutter	192	
	5.4	Engineering Solutions for Flutter	194	
		5.4.1 The k Method	195	
		5.4.2 The p - k Method	196	
	5.5	Unsteady Aerodynamics	201	
		5.5.1 Theodorsen's Unsteady Thin-Airfoil Theory	203	
		5.5.2 Finite-State Unsteady Thin-Airfoil Theory of Peters et al.	206	
		Flutter Prediction via Assumed Modes	211	
		Flutter Boundary Characteristics	217	
	5.8	Structural Dynamics, Aeroelasticity, and Certification	220	
		5.8.1 Ground-Vibration Tests	221	
		5.8.2 Wind Tunnel Flutter Experiments	222	
		5.8.3 Ground Roll (Taxi) and Flight Tests	222	
		5.8.4 Flutter Flight Tests	224	
	5.9	Epilogue	225	
		Problems	225	
	Арр	pendix A: Lagrange's Equations	231	
	A.l	Introduction	231	
	A.2	Degrees of Freedom	231	
	A.3	Generalized Coordinates	231	
	A.4	Lagrange's Equations	232	
	A.5	Lagrange's Equations for Conservative Systems	236	
	A.6	Lagrange's Equations for Nonconservative Systems	239	
References				
Index			243	