Peter Zeller (Hrsg.)

Handbuch Fahrzeugakustik

Grundlagen, Auslegung, Berechnung, Versuch

3., aktualisierte Auflage

Inhaltsverzeichnis

1	Einleitung	1
	Peter Zeller	
1.1	Automobil und Gesellschaft	2
1.2	Trends in der Automobilakustik	4
	Literatur	6
2	Methodische Grundlagen	7
	Peter Zeller	
2.1	Prozess Akustikentwicklung	8
2.1.1	Vibroakustische Fahrzeugeigenschaften	8
2.1.2	Zielfindung	8
2.1.3	Subjektive Beurteilung von Fahrzeugeigenschaften	10
2.1.4	Geräuschmetrik	10
2.1.5	Funktionsorientierung	14
2.2	Vibroakustische Modelle	15
2.2.1	Modellbildung	15
2.2.2	Elektromechanische Analogie	19
2.2.3	Beispiel Einmassenschwinger	20
2.2.4	Elektroakustische Analogie	23
2.3	Vibroakustische Analyse	23
2.3.1	Lineare Analyse im Frequenzbereich, Vierpoltheorie	23
2.3.2	Nichtlineare Analyse im Zeitbereich, Simulation	26
	Literatur	27
3	Elementare Schwingungssysteme	29
	Peter Zeller	
3.1	Freie Schwingungen	31
3.1.1	Einmassenschwinger	31
3.1.2	Ungefesselter Zweimassenschwinger	33
3.1.3	Gekoppelte Schwingsysteme	34
3.2	Erzwungene Schwingungen	36
3.2.1	Einmassenschwinger	36
32.2	Zweimassenschwinger	38
3.3	Selbsterregte Schwingungen	41
3.3.1	Ruckgleiten	41
3.3.2	Ratterschwingungen	44
3.4	Parametrische Schwingungen	47
	Literatur	47
4	Schwingungsminderung	49
	Peter Zetter	
4.1	Schwingungsisolation	51
4.1.1	Einfach Elastische Lagerung	51
4.1.2	Doppelt Elastische Lagerung	54

4.2	Schwingungsdämpfung	56
4.2.1	Rheologische Materialmodelle	56
4.2.2	Makroskopische Reibmodelle	59
4.2.3	Reibungsdämpfung	60
4.2.4	Elastische Dämpferanbindung	61
4.2.5	Skyhook-Dämpfung	62
4.3	Bauteile zur Schwingungsisolation	64
4.3.1	Elastische Federelemente	64
4.3.2	Viskoelastische Lagerelemente	66
4.3.3	Schwingungsdämpfer	70
4.4	Passive Schwingungskompensation	73
4.4.1	Schwingungstilger	73
4.4.2	Fliehkraftpendel	76
4.5	Aktive Schwingungskompensation	78
4.5.1	Funktionsprinzip	78
4.5.2	LMS-Algorithmus	81
4.5.3	Aktive Lagerung	82
4.5.4	Trägheitsmassenaktor	83
4.6	Subjektives Schwingungsempfinden	85
	Literatur	88
5	Schwingungsphänomene im Kraftfahrzeug	89
	Peter Zeller	
5.1	Fahrbahnerregte Schwingungen	93
5.1.1	Vertikaldynamik	94
5.1.2	Sprungförmige Unebenheitsanregung, Stößigkeit	98
5.1.3	Harmonische Unebenheitsanregung	104
5.1.4	Stochastische Unebenheitsanregung realer Fahrbahnen	107
5.1.5	Fahrverhalten bei Unebenheitsanregung	109
5.1.6	Konflikt Fahrkomfort vs. Fahrsicherheit	111
5.1.7	Aktive Fahrwerke	114
5.1.8	Sitzschwingungen	117
5.1.9	Nicken, Einspurmodell	120
5.1.10	Wanken, Zweispurmodell	122
5.1.11	Karosseriezittern	123
5.1.12	Motorstuckern	131
5.2	Raderregte Schwingungen	134
5.2.1	Ungleichförmigkeitsanregung	134
5.2.2	Lenkradschwingungen	136
5.2.3	Karosserieschwingungen	137
5.2.4	Bremsenrubbeln	137
5.2.5	Anfahr- und Bremsstempeln	138
5.3	Motorerregte Schwingungen	139
5.3.1	Leerlaufschwingungen	139
5.3.2	Start-Stopp-Schwingungen	140
5.3.3	Lastwechselschwingungen	144

5.4	Karosserieschwingungen/Strukturdynamik	151
5.4.1	Statische Steifigkeit	151
5.4.2	Dynamische Steifigkeit	152
5.4.3	Funktionsmodell Karosserie	154
5.4.4	Karosserieunterzüge	155
	Literatur	157
6	Luftschall	159
	Peter Zeller	
6.1	Begriffe	161
6.2	Primärer Luftschall	163
6.3	Elementare Schallfelder	165
6.3.1	Ebene Schallwelle	165
6.3.2	Kugelstrahler	166
6.3.3	Strahlergruppe	168
6.4	Luftschalldämmung	169
6.4.1	Luftschalltransmission	169
6.4.2	Schalldämmmaße	171
6.4.3	Biegeweiche isotrope Platten	172
6.4.4	Biegesteife isotrope Platten	174
6.4.5	Mehrschichtbauteile	176
6.4.6	Mehrflächige Systeme	180
6.4.7	Transmission durch Leckagen	181
6.5	Luftschallabsorption	185
6.5.1	Poröse Absorber	186
6.5.2	Kammer-und Membran-Absorber	189
6.5.3	Mikroperforierte Absorber (MPA)	191
6.5.4	Helmholtz-Resonator	193
6.6	Schallisoliersysteme im Fahrzeug	194
6.6.1	Motorkapselung	195
6.6.2	Stirnwand, Schalleintrag in den Innenraum	196
6.6.3	Unterbodenverkleidung (UBV)	199
6.6.4	Bodengruppe	199
6.6.5	Türen und Fenster	201
6.7	Schallausbreitung in Räumen	203
6.7.1	Raumresonanzen	204
6.7.2	Modalfeld	206
6.7.3	Diffuses Schallfeld	208
6.7.4	Kohärenz von Schallfeldern	208
6.7.5	Hörsamkeit	210
6.8	Schallausbreitung in Rohren und Kanälen	212
6.8.1	Offenes und geschlossenes Rohrende	214
6.8.2	T-Abzweigung mit A/4-Rohr	215
6.8.3	T-Abzweigung mit Resonator	216
6.8.4	Expansionskammer	216
6.8.5	Reflexionsschalldämpfer	217

6.8.6	Absorptionsschalldämpfer	218
6.8.7	Strömungsgeräusche	219
	Literatur	221
7	Körperschall	223
	Peter Zeller	
7.1	Plattenschwingungen	224
7.1.1	Freie Plattenschwingungen	224
7.1.2	Plattenschwingungen bei ßetriebsanregung	228
7.1.3	Mobilitäten elementarer Bauteile	230
7.2	Indirekter Luftschall	232
7.2.1	Flächenstrahler, Rayleighintegral	232
7.2.2	Kolbenstrahler	234
7.2.3	Modale Abstrahlung	236
7.2.4	Plattenabstrahlung	237
7.3	Körperschallübertragung	240
7.3.1	Maschinenakustische Gleichung	240
7.3.2	Körperschallimmission	242
7.3.3	Dämmung durch Zusatzimpedanz	244
7.3.4	Dämmung durch elastische Lagerung	245
7.3.5	Dämpfung, Entdröhnung	247
	Literatur	250
8	Psychoakustik	251
	Peter Zeller	
8.1	Das menschliche Hörorgan	252
8.2	Hörempfindung	253
8.3	Komplexe Empfindungsgrößen	255
8.3.1	Lautheit	255
8.3.2	Rauheit	257
8.3.3	Tonheit	258
8.3.4	Schärfe	259
8.3.5	Klanghaftigkeit	259
8.4	Sprachverständlichkeit	261
8.5	Psychometrische Messungen	262
	Literatur	265
9	Fahrgeräusch	267
	Peter Zeller	
9.1	Antriebsgeräusch	268
9.2	Wind- und Rollgeräusch	271
9.2.1	Rollgeräusch	272
9.2.2	Poltern	273
9.2.3	Umströmungsgeräusch	275
9.2.4	Wummern	279
9.3	Sound-Design	279
9.3.1	Zielsound	280
9.3.2	Aktive Schallbeeinflussung	282

9.4	Hybrid-und Elektroantrieb	288
	Literatur	290
10	Motorgeräusch	291
	Peter Zeller	
10.1	Verbrennungsgeräusch	294
10.2	Gas- und Massenkräfte	296
10.2.1	Motorordnungen	296
10-2.2	Massenkräfte	297
10.2.3	Gaskräfte	300
10.2.4	Tangentialkräfte	305
10.3	Massenausgleich	307
10.3.1	Massenausgleich beim R4-Motor	308
10.3.2	Massenausgleich beim R3-Motor	311
10.4	Leistungsausgleich	311
10.4.1	Drehungleichförmigkeit (DU)	311
10.4.2	Isolation der DU	313
10.4.3	Kompensation der DU	318
10.4.4	Dämpfung der DU durch Schlupf	319
10.5	Mechanische Geräusche	320
10.5.1	Kurbeltrieb	321
10.5.2	Ventiltrieb	322
10.5.3	Abgas-Turbolader	322
10.5.4	Kettentrieb	323
10.5.5	Getriebegeräusche	325
10.6	Lagerung Aggregat/Triebstrang	327
10.6.1	Körperschallpfade	327
10.6.2	Anforderungen und Lagerungskonzepte	328
10.6.3	Bewegungsgleichungen	330
10.6.4	Anregung durch Tangentialkräfte	332
10.6.5	Anregung freier Massenkräfte und -momente	334
10.6.6	Lagerung Hinterachse	335
	Literatur	337
11	Ladungswechselgeräusch	339
	Andreas Enderich und RolfJebasinski	
11.1	Ansauganlage	340
11.1.1	Aufbau	340
11.1.2	Problemstellungen und Entwicklungsziele	342
11.1.3	Simulation	343
11.1.4	Akustikmaßnahmen	345
11.1.5	Validierung	349
11.2	Abgasanlage, Schalldämpfer	352
11.2.1	Funktion und Aufbau	352
11.2.2	Testmethoden	355
11.2.3	Komponentenbeitrag zum Abgasgeräusch	356
11.2.4	Körperschallemission der Komponenten	362
11.2.5	Auswirkung beim Innengeräusch	364

11.2.6	Sound Design	367
11.2.7	Berechnung der Abgasanlagenakustik	368
	Literatur	369
12	Reifen-Fahrbahngeräusch	371
	Ernst-Ulrich Saemann	
12.1	Reifeneigenschaften	372
12.2	Reifeneinfluss auf das Rollgeräusch	374
12.2.1	Strukturschall durch Reifenschwingungen	376
12.2.2	Kompressionsgeräusch	381
12.2.3	Horneffekt	382
12.2.4	Resonanzphänomene	382
12.2.5	Zielkonflikte	383
12.3	Fahrbahneinfluss auf das Rollgeräusch	384
12.4	Rollgeräusch außerhalb des Fahrzeugs	387
12.5	Rollgeräusch innerhalb des Fahrzeugs	388
12.5.1	Transferpfade ins Fahrzeug	388
12.5.2	Geräuschphänomene	389
12.5.3	Luftschwingungen im Reifeninnern	390
	Literatur	391
13	Stör- und Betätigungsgeräusche	393
	Peter Zeller und Tobias Moosmayr	
13.1	Mechatronische Geräusche	395
13.1.1	Elektrische Stellmotoren	396
13.1.2	Lüfter und Gebläse	398
13.1.3	Fahrzeugklimatisierung	401
13.1.4	Lenkungssystem	404
13.1.5	Bremssystem	409
13.1.6	Biegeschlaffe Leitungen	413
13.2	Kontaktstellengeräusche	417
13.2.1	Anregungsarten	418
13.2.2	Stick-Slip-Effekt	421
13.2.3	Anschlag-Effekt	422
13.2.4	Bewertungs- und Auslegungskriterien	424
13.3	Audio-Störgeräusche	427
13.4	Türbetätigungsgeräusch	428
	Literatur	430
14	Außengeräusch	433
	Peter Zeller, Hugo Fastl und Stefan Kerber	
14.1	Standgeräusch	434
14.2	Fahrgeräusche	435
14.2.1	Reifen/Fahrbahngeräusch	437
14.2.2	Antriebsgeräusch	439
14.2.3	Vorbeifahrt nach ISO 362	441
14.2.4	Lärmminderungspotential durch Elektroantriebe	443

14.3	Akustische Wahrnehmbarkeit	443
14.3.1	Einleitung	443
14.3.2	Psychoakustische Grundlagen	444
14.3.3	Experimentelle Ermittlungder akustischen Wahrnehmbarkeit	445
14.3.4	Vorhersage der akustischen Wahrnehmbarkeit	447
14.3.5	Beeinflussung durch zusätzliche Faktoren	448
14.3.6	Maßnahmen zur Verbesserung der akustischen Wahrnehmbarkeit	449
	Literatur	450
15	Berechnung und Simulation	451
	Peter Zeller und Dennis de Klerk	
15.1	Mehrkörpersimulation (MKS)	452
15.2	Struktur-Optimierung	454
15.3	Akustik-Berechnung (FEM)	456
15.3.1	Modale Gleichungen	457
15.3.2	Äquivalente abgestrahlte Schallleistung	459
15.4	Boundary Element Methode (BEM)	460
15.5	Statistische Energieanalyse (SEA)	462
15.6	Aeroakustik-Berechnung (CAA)	465
15.6.1	Navier-Stokes-Gleichungen	467
15.6.2	Lattice-Bolzmann-Methode	468
15.7	Substrukturtechnik	469
15.7.1	Methodische Grundlagen	469
15.7.2	EMPC-Methode	471
15.7.3	Identifikation vonBetriebsanregungen	473
	Literatur	476
16	Messverfahren	477
	Peter Zeller	
16.1	Binaurale Messtechnik	478
16.2	Ortung von Schallquellen	479
16.2.1	Intensitätssonde	479
16.2.2	Akustische Nahfeldholografie	481
16.2.3	Akustische Fernfeldholografie	481
16.3	Akustische Systemidentifikation	484
16.3.1	Übertragungsfunktionen	484
16.3.2	Impulshammermethode	485
16.4	Transferpfadanalyse (TPA)	486
16.4.1	Rechnerische Luftschall-TPA	488
16.4.2	Experimentelle Körperschall-TPA	489
16.4.3	Experimentelle Luftschall-TPA	490
16.5	Modalanalyse und-synthese	491
16.5.1	Modalzerlegung	491
16.5.2	Experimentelle Modalanalyse	493
16.6	Betriebsschwingungsanalyse	495
16.6.1	Laser-Scanning-Vibrometrie	496
16.6.2	Speckle-Interferometrie	496
	Literatur	497

17	Vibroakustische Messtechnik	499
	Josef Hobelsberger	
17.1	Einsatzbereiche	500
17.1.1	Technisches Umfeld	500
17.1.2	Messabläufe	501
17.2	Vibroakustische Sensoren	503
17.2.1	Beschleunigungssensor	503
17.2.2	Messmikrofon	505
17.2.3	Laservibrometer	506
17.3	Signalverarbeitung	507
17.3.1	Kalibrierung	507
17.3.2	Signalkonditionierung	508
17.3.3	Drehzahlerfassung	509
17.3.4	Ergänzende Messgrößen	510
17.4	Analyse-Methoden	511
17.4.1	Gleitender Mittelwert	511
17.4.2	Frequenzanalysen	512
17.4.3	Ordnungsanalysen	516
17.4.4	Ordnungsfilterung im Motorenbau	517
17.4.5	Grad-Kurbelwinkel-Analyse	518
17.4.6	Drehschwingungsanalyse	518
17.4.7	Beitragsanalyse	519
17.4.8	Response Modification Analysis	522
17.5	Audio-Synthese, Auralisierung	523
17.5.1	Geräusch-Synthese	525
	Literatur	528
18	Vibroakustische Prüftechnik	529
	Peter Zeller	
18.1	Dynamischer Motorprüfstand	530
18.2	Freifeldraum	531
18.3	Hallraum	532
18.4	Fenster-Prüfstand	536
	Literatur	537
19	Anlagen	539
	Peter Zeller	
19.1	Matlab-Modell der Vertikaldynamik eines Fahrzeugs	540
19.2	Simulink-Modell der Vertikaldynamik eines Fahrzeugs	541
19.3	Simulink-Modell der Längsdynamik eines Fahrzeugs (Ruckeln)	542
19.4	Arbeitsprozessrechnung Verbrennungsmotor in Matlab	543
	Serviceteil	545
	Sachwortverzeichnis	546