Generalized Method of Moments

ALASTAIR R. HALL

Contents

1	Inti	roduction	1
	1.1	Generalized Method of Moments in Econometrics	1
	1.2	Population Moment Conditions and the Statistical	
		Antecedents of GMM	5
	1.3	Five Examples of Moment Conditions in Economic Models	15
		1.3.1 Consumption-Based Asset Pricing Model	15
		1.3.2 Evaluation of Mutual Fund Performance	17
		1.3.3 Conditional Capital Asset Pricing Model	20
		1.3.4 Inventory Holdings by Firms	22
		1.3.5 Stochastic Volatility Models of Exchange Rates	24
	1.4	Review of Statistical Theory	26
		1.4.1 Properties of Random Sequences	27
		1.4.2 Stationary Time Series, the Weak Law of Large	
		Numbers and the Central Limit Theorem	29
	1.5	Overview of Later Chapters	31
2	The	e Instrumental Variable Estimator in the	
	Lin	ear Regression Model	33
	2.1	The Population Moment Condition and Parameter Identification	34
	2.2	The Estimator and a Fundamental Decomposition	36
	2.3	Asymptotic Properties	39
	2.4	The Optimal Choice of Weighting Matrix	43
	2.5	Specification Error: Consequences and Detection	44
	2.6	Summary	47
3	GM	IM Estimation in Correctly Specified Models	49
	3.1	Population Moment Condition and Parameter Identification	50
	3.2	The Estimator and Numerical Optimization	57
	3.3	The Identifying and Overidentifying Restrictions	64
	3.4		
	<i></i>	Asymptotic Properties	66
	5	Asymptotic Properties	66 67
	5	Asymptotic Properties	
		Asymptotic Properties 3.4.1 Consistency of the Parameter Estimator	67

		3.5.1	Serially Uncorrelated Sequences	76		
		3.5.2	VARMA Processes	76		
		3.5.3	Heteroscedasticity and Autocorrelation Covariance			
			Matrix Estimators	79		
	3.6	The C	Pptimal Choice of Weighting Matrix	88		
	3.7	Transt	formations, Normalizations and the Continuous Updating			
		GMM	Estimator	94		
	3.8	GMM	as a Unifying Principle of Estimation	108		
		3.8.1	Single Step Estimators	109		
		3.8.2	Sequential Estimators	112		
	3.9	Summ	nary	114		
4	GM	IM Est	timation in Misspecified Models	117		
	4.1	Proba	bility Limit of the First Step Estimator	120		
	4.2	Asym	ptotic Distribution Theory for the First Step Estimator	121		
	4.3	Long	Run Covariance Matrix Estimation	125		
	4.4	The T	wo Step or Iterated GMM Estimator	128		
		4.4.1	Estimation with $Wt = S < 7^{\wedge}$ or $Wt = ^{\wedge}$	128		
		4.4.2	Estimation with $Wt = Sh \setminus_{c}$ or $Wt = Sh \setminus_{C} h$	1^1		
			4.4.2.1 Estimation with $Wt = Sjjl_{AC fl}$	131		
			4.4.2.2 Estimation with $Wt = Sfj c$	135		
	4.5		stimated Sample Moment	138		
	4.6		ary of Consequences of Misspecification for GMM			
		Estim	ation	139		
5	Hyp	Aypothesis Testing				
	5.1	The O	overidentifying Restrictions Test	143		
		5.1.1	The Statistic and its Asymptotic Distribution in Correctly			
			Specified Models	144		
		5.1.2	Non-Local Misspecification	145		
			Local Misspecification	148		
		5.1.4	The Parallels Between Non-Local and Local Analysis	151		
	5.2		g Hypotheses about Subsets of $E[f(v_t, Oo)]$	153		
		5.2.1	Technical Details	158		
	5.3		g Hypotheses About the Parameter Vector	161		
		5.3.1	GMM Estimation Subject to Nonlinear Restrictions on δ_0	1.65		
	- A	т. /:	and Other Technical Details	165		
	5.4		g Hypotheses About Structural Stability	170		
		5.4.1	Known Break Point Case	171		
		5.4.2	Unknown Break Point Case	178		
		5 4 2	5.4.2.1 Technical Details	187		
	<i>-</i> -	5.4.3	Other Types of Structural Instability	193		
	5.5		Hypothesis Tests	194		
		5.5.1 5.5.2	Non-Nested Hypothesis Tests Hausman Tests	194 197		

		5.5.3 Conditional Moment Tests	198		
	5.6	Summary	199		
6	A cru	symptotic Theory and Finite Sample Behaviour			
U	Asy 6.1	The Impact of the Degree of Overidentification on the Asymptotic	202		
	0.1	Behaviour of the Estimator	203		
		6.1.1 Finite Increase in the Degree of Overidentification	203		
		6.1.2 Redundant Moment Conditions	205		
		6.1.3 The Degree of Overidentification Increases with the Sam-	200		
		ple Size	206		
	6.2	*	208		
		6.2.1 Exact Results for the IV Estimator in the Linear Simul-			
		taneous Equations Models	208		
		6.2.2 Higher Order Approximations	212		
	6.3	Simulation Evidence from Nonlinear Dynamic Models	217		
	6.4	Summary and Link to Following Chapters	230		
7	Мо	ment Selection in Theory and in Practice	232		
'	7.1	Preliminaries	234		
	7.2	The Optimal Instrument	237		
	/	7.2.1 Static Models	238		
		7.2.2 Dynamic Models	245		
		7.2.3 Efficiency Comparison with Maximum Likelihood	251		
	7.3	Moment Selection in Practice	252		
		7.3.1 Selection Based on the Orthogonality Condition	253		
		7.3.2 Selection Based on the Relevance Condition	259		
		7.3.3 A Combined Strategy	262		
		7.3.4 Other Methods of Instrument Selection	264		
	7.4	Summary	267		
8	Alte	ernative Approximations to Finite Sample Behaviour	270		
	8.1	The Bootstrap	271		
		8.1.1 Background and Intuition	271		
		8.1.2 Nonlinear Dynamic Models	277		
		8.1.2.1 Generation of Bootstrap Sample When the Data			
		are Dependent	279		
		8.1.2.2 Calculation of the GMM Estimator and Related			
		Statistics in the Bootstrap Samples	282		
		8.1.2.3 Choosing the Number of Replications	287		
		8.1.2.4 Summary of Bootstrap Calculations	290		
	8.2	Inference in the Presence of Weak Identification	294		
		8.2.1 The Limiting Behaviour of the GMM Estimator	297		
		8.2.2 Inference in the Presence of Weak Identification	300		
	02	8.2.3 The Detection of Weak Identification	302		
	8.3	Inference When the Long Run Variance is Estimated by an HAC Estimator with $bx = T$	305		
	8.4	Summary Summary	303 310		
	0.4	Summary	510		

9	Empirical Examples		
	9.1	Mutual Fund Performance Evaluation	313
	9.2	Conditional Capital Asset Pricing Model	318
	9.3	Inventory Holdings by Firms	325
	9.4	Stochastic Volatility Model of Exchange Rates	334
10	0 Related Methods of Estimation		342
	10.1	Simulation Based Estimation	342
		10.1.1 Simulated Method of Moments	343
		10.1.2 Indirect Inference	347
	10.2	Empirical Likelihood	350
Ар	pen	dix A Mixing Processes and Nonstationarity	354
-	A.1	Mixing processes	354
		Nonstationarity	357
	Bibl	iography	359
	Autl	nor Index	389
	Subj	ect Index	396