

>!"li H-t> /i f-f' i'*J"i T-t i"v /S 'f -».K

CORROSION, COLORANTS, CONSERVATION

DAVID A. SCOTT The Getty Conservation Institute Los Angeles

Contents

xi Foreword

Timothy P. Whalen

- xii Preface
- 1 Introduction

CHAPTER 1 CORROSION AND ENVIRONMENT

- 11 *The Anatomy of Corrosion* The electrochemical series
- Some Historical Aspects of Copper and Corrosion Primitive wet-cell batteries?
 Early technologies with copper and iron
 Early history of electrochemical plating
 Copper in early photography
 Dezincification
- 32 *Pourbaix Diagrams and Environmental Effects* The burial environment The outdoor environment The indoor museum environment The marine environment
- 72 Copper in Contact with Organic Materials Positive replacement and mineralization of organic materials
- 77 The Metallography of Corroded Copper Objects
- 79 Corrosion Products and Pigments

CHAPTER 2 OXIDES AND HYDROXIDES

- 82 Cuprite
 Properties of cuprite
 Natural cuprite patinas
 Intentional cuprite patinas
 Copper colorants in glasses and glazes
- 95 Tenorite
 - Tenorite formation
- 98 Spertiniite
- 98 Conservation Issues

CHAPTER 3 BASIC COPPER CARBONATES

- Malachite
 Decorative uses of malachite
 Malachite as a copper ore
 Nomenclature confusion
 Mineral properties
 Malachite as a pigment
 Malachite in bronze patinas
 Isotope ratios to determine corrosion
 environment
- 108 Azurite
 Azurite as a corrosion product
 Azurite as a pigment
 Conservation issues for azurite
- m Formation of Copper Carbonates in Solution
- 113 Decomposition of Malachite and Azurite by Heat
- 113 Artificial Malachite and Azurite
 114 Blue and Green Verditer
 Use of blue and green verditer in art
- Synthesis of blue and green verditer
 116 *Mixed-Cation Copper Carbonates* Mixed copper-zinc carbonates in corrosion Synthetic pigments with copper and zinc salts
- 117 Chalconatronite: A Sodium-Copper Carbonate Synthesis and use of chalconatronite Chalconatronite as a corrosion product

CHAPTER 4 CHLORIDES AND BASIC CHLORIDES

- 122 The Copper Chlorides

 Nantokite
 Atacamite
 Paratacamite (anakarite) and clinoatacamite
 Botallackite
- 125 Copper Chlorides and Bronze Disease
 Bronze disease research
 Role of chloride ions in corrosion
 Pitting corrosion
- 134 The Basic Copper Chlorides as Pigments Synthetic pigments Pigment morphology
- 139 Other Basic Copper Chlorides

 Connellite
 Calumetite
 Anthonyite
 Cumengite and mixed copper-lead chlorides
 Mixed copper-zinc chlorides
 Other mixed-cation copper chlorides

CHAPTER 5 BASIC SULFATES

- 146 Historical References to Copper Sulfates
- 147 The Basic Copper Sulfates
 Brochantite and antlerite
 Posnjakite
 Other basic sulfates
- 154 Environment and Corrosion Atmospheric sulfur dioxide Microenvironment and corrosion
- 159 Case Studies of Exposed Bronzes
 The Statue of Liberty
 The Great Buddha at Kamakura
 Gettysburg National Military Park bronzes
 Brancusi's Infinite Column
- 164 Sulfate Deposition in Burial Environments
- 165 Basic Sulfates as Pigments

169 PLATES

CHAPTER 6 COPPER SULFIDES

- 226 The Chemistry of Copper Sulfides
- 227 Corrosion Environments and Copper Sulfide Production
 Sulfide formation in reducing environments
 Sulfide formation from atmospheric exposure
 Sulfide formation from pollution in the museum environment
- 235 Copper Sulfides and Niello Niello recipes Artifacts decorated with niello Niello chemistry

CHAPTER 7 COPPER PHOSPHATES AND COPPER NITRATES

- 240 The Copper Phosphates
 Copper phosphate chemistry
 Copper phosphate corrosion in different environments
 Sampleite and the arid environment
 Pseudomalachite: A copper phosphate pigment
- 246 *Turquoise* The chemistry and mineralogy of turquoise The history of turquoise
- 250 The Copper Nitrate Minerals Copper nitrate corrosion products

CHAPTER 8 COPPER SILICATES

- 253 *Chrysocolla* Chrysocolla as a pigment
- 255 Dioptase
- 255 Copper Silicates and Glasses
- 257 Egyptian Blue and Other Synthetic Copper Silicates Geographic distribution of Egyptian blue Lost and found secrets of Egyptian blue Chemical formulation of Egyptian blue Egyptian green Terminology Pigment deterioration mystery
- 266 Han Blue and Han Purple: Synthetic Pigments from China

CHAPTER 9 THE ORGANIC SALTS OF COPPER

- 269 The Copper Formates
- 270 *The Copper Acetates* The chemistry of verdigris The history of verdigris
- 279- Early Verdigris Recipes Recipes from Pliny the Elder Variants of verdigris Problems with verdigris
- 294 The Copper Resinates The chemistry of copper resinates Copper salts of higher acids Copper proteinates
- 299 Organic Salts of Copper and Bronze Corrosion Corrosion problems in the museum environment
- 303 Conservation Treatments Treatment residues and the formation of copper salts
- 306 Copper Salts as Pigments
 Green copper pigments
 Brown copper pigments
 Copper phthalocyanine

CONTENTS

CHAPTER 10 COPPER AS A SUBSTRATE FOR PAINTINGS

- 317 Early Coatings and Fabrication Methods Analytical techniques
- 321 Enamel on Copper

CHAPTER 11

SOME ASPECTS OF BRONZE PATINAS

- 323 Changing Views of Bronze Patinas
- 327 Some Patina VariationsArsenic coating as a patinaLead and patinasBlack patina in the aqueous environment
- Patinas in the Renaissance
 Other coatings on Renaissance bronzes
 Unraveling an object's patination history
- 333 Patination during the Nineteenth Century
- 334 Two Detailed Studies of Patina and Corrosion Roman bronzes Chinese bronze mirrors
- 349 Some Finishes and Preserved Structures Traditional finishes on scientific instruments Tool marks preserved in patinas

CHAPTER 12 CONSERVATION TREATMENTS FOR BRONZE OBJECTS

- 353 Understanding Treatment Histories
- 353 Some Past Conservation Treatments Patina-stripping techniques
 ' Drying and sealing methods Other early treatment methods
- 357 Mechanical Cleaning Preserving evidence of the past Mechanical cleaning techniques today Unanswered questions

Preservation without treatment

- 362 Chemical Cleaning Treatments General treatments Localized chemical treatments Cleaning reagents
- 369 Cleaning Marine Finds Stabilization problems and techniques

- 374 Repatination of Cleaned Surf aces Outdoor bronzes An "indoor" bronze outdoors
- 376 *The Use of Corrosion Inhibitors* Benzotriazole AMT as a corrosion inhibitor
- 382 Coatings for Copper Alloys
 Shellacs and lacquers
 Resin coatings
 Incralac
 Ormocer and other polymer coatings
 Problems with coatings
 Need for research
- 391 Passive Stabilization
- 392 Nondestructive Testing Radiographic examination Ultrasonic scanning Infrared imaging Acoustic emission analysis Other techniques
- 398 APPENDIX A Some Aspects of the Chemistry of Copper and Bronze
- 404 APPENDIX B Recipes
- 418 APPENDIX C * Some Copper Minerals and Corrosion Products
- 424 APPENDIX D X-Ray Diffraction Studies
- 456 REFERENCES
- 488 NAME INDEX
- 496 SUBJECT INDEX
- 512 ILLUSTRATION CREDITS
- 515 ABOUT THE AUTHOR

CONTENTS