OpenCV: Computer Vision Projects with Python

Get savvy with OpenCV and actualize cool computer vision applications

A course in three modules

Packt

BIRMINGHAM - MUMBAI

Module 1: OpenCV Computer Vision with Python

Chapter 1: Setting up OpenCV	3
Choosing and using the right setup tools	4
Running samples	16
Finding documentation, help, and updates	17
Summary	18
Chapter 2: Handling Files, Cameras, and GUIs	19
Basic I/O scripts	19
Project concept	26
An object-oriented design	27
Summary	36
Chapter 3: Filtering Images	37
Creating modules	37
Channel mixing – seeing in Technicolor	38
Curves – bending color space	42
Highlighting edges	51
Custom kernels – getting convoluted	52
Modifying the application	55
Summary	56
Chapter 4: Tracking Faces with Haar Cascades	57
Conceptualizing Haar cascades	58
Getting Haar cascade data	59
Creating modules	60
Defining a face as a hierarchy of rectangles	60
Tracing, cutting, and pasting rectangles	61
Adding more utility functions	63
Tracking faces	64

Table of Contents

Modifying the application	69
Summary	74
Chapter 5: Detecting Foreground/Background Regions	
and Depth	75
Creating modules	75
Capturing frames from a depth camera	76
Creating a mask from a disparity map	79
Masking a copy operation	80
Modifying the application	82
Summary	84
Appendix A: Integrating with Pygame	85
Installing Pygame	85
Documentation and tutorials	86
Subclassing managers.WindowManager	86
Modifying the application	88
Further uses of Pygame	88
Summary	89
Appendix B: Generating Haar Cascades for Custom Targets	91
Gathering positive and negative training images	91
Finding the training executables	92
Creating the training sets and cascade	93
Testing and improving <cascade></cascade>	96
Summary	97
Module 2: OpenCV with Python By Example	
Chapter 1: Detecting Edges and Applying Image Filters	101
2D convolution	102
Blurring	103
Edge detection	106
Motion blur	109
Sharpening	111
Embossing	113
Erosion and dilation	115
Creating a vignette filter	116
Enhancing the contrast in an image	119
Summary	122

Chapter 2: Cartoonizing an Image	<u>123</u>
Accessing the webcam	123
Keyboard inputs	124
Mouse inputs	126
Interacting with a live video stream	128
Cartoonizing an image	130
Summary	138
Chapter 3: Detecting and Tracking Different Body Parts	139
Using Haar cascades to detect things	139
What are integral images?	141
Detecting and tracking faces	142
Fun with faces	144
Detecting eyes	147
Fun with eyes	150
Detecting ears	152
Detecting a mouth	153
It's time for a moustache	155
Detecting a nose	156
Detecting pupils	158
Summary	160
Chapter 4: Extracting Features from an Image	<u>161</u>
Why do we care about keypoints?	161
What are keypoints?	164
Detecting the corners	166
Good Features To Track	168
Scale Invariant Feature Transform (SIFT)	169
Speeded Up Robust Features (SURF)	172
Features from Accelerated Segment Test (FAST)	174
Binary Robust Independent Elementary Features (BRIEF)	176
Oriented FAST and Rotated BRIEF (ORB)	178
Summary	179
Chapter 5: Creating a Panoramic Image	<u>181</u>
Matching keypoint descriptors	181
Creating the panoramic image	186
What if the images are at an angle to each other?	192
Summary	194
Chapter 6: Seam Carving	<u>195</u>
Why do we care about seam carving?	196
How does it work?	197

Table of Contents

How do we define "interesting"?	198
How do we compute the seams?	199
Can we expand an image?	203
Can we remove an object completely?	207
Summary	213
Chapter 7: Detecting Shapes and Segmenting an Image	<u>215</u>
Contour analysis and shape matching	215
Approximating a contour	219
Identifying the pizza with the slice taken out	221
How to censor a shape?	225
What is image segmentation?	229
Watershed algorithm	233
Summary	235
Chapter 8: Object Tracking	<u>237</u>
Frame differencing	237
Colorspace based tracking	240
Building an interactive object tracker	242
Feature based tracking	248
Background subtraction	253
Summary	257
Chapter 9: Object Recognition	259
Object detection versus object recognition	259
What is a dense feature detector?	263
What is a visual dictionary?	267
What is supervised and unsupervised learning?	271
What are Support Vector Machines?	271
How do we actually implement this?	273
Summary	285
Chapter 10: Stereo Vision and 3D Reconstruction	<u> 287</u>
What is stereo correspondence?	287
What is epipolar geometry?	292
Building the 3D map	300
Summary	307
Chapter 11: Augmented Reality	309
What is the premise of augmented reality?	309
What does an augmented reality system look like?	310
Geometric transformations for augmented reality	311
What is pose estimation?	313
How to track planar objects?	314

	Table of Contents
How to augment our reality?	324
Let's add some movements	330
Summary	336
•	
Module 3: OpenCV with Python Blueprints	
Chapter 1: Fun with Filters	339
Planning the app	341
Creating a black-and-white pencil sketch	341
Generating a warming/cooling filter	346
Cartoonizing an image	351
Putting it all together	355
Summary	362
Chapter 2: Hand Gesture Recognition Using a Kinect	
Depth Sensor	<u>363</u>
Planning the app	365
Setting up the app	365
Tracking hand gestures in real time	369
Hand region segmentation	370
Hand shape analysis	376
Hand gesture recognition	378
Summary	383
Chapter 3: Finding Objects via Feature Matching and	
Perspective Transforms	385
Tasks performed by the app	386
Planning the app	388
Setting up the app	389
The process flow	391
Feature extraction	393
Feature matching	395
Feature tracking	403
Seeing the algorithm in action	406
Summary	408
Chapter 4: 3D Scene Reconstruction Using Structure	
rom Motion	<u>409</u>
Planning the app	411
Camera calibration	412
Setting up the app	420
Estimating the camera motion from a pair of images	423

Table of Contents

433
435
438
439
442
442
445
458
465
466
467
469
469
474
478
483
495
499
501
503
505
512
535
539
541