High-Resolution and Robust Signal Processing

edited by

YINGBO HUA
University of California, Riverside
Riverside, California, U.S.A.

ALEX B. GERSHMAN
McMaster University
Hamilton, Ontario, Canada

Qi CHENG
University of Western Sydney
Kingswood, New South Wales, Australia
1 A REVIEW OF PARAMETRIC HIGH-RESOLUTION METHODS  1
Qi Cheng and Yingbo Hua
1.1 Introduction  1
  1.1.1 Data Model  2
1.2 Estimation Techniques Using Algebraic Principles  4
  1.2.1 Linear Prediction  5
  1.2.2 Matrix Pencil  11
1.3 Estimation Techniques Using Large-Sample Theorems  21
  1.3.1 Subspace Rotation Invariance - ESPRIT  21
  1.3.2 Subspace Fitting - MUSIC  26
  1.3.3 Maximum Likelihood Methods  29
  1.3.4 Smoothing for Coherent Signals  37
1.4 Detection Techniques Using a Single Measurement  41
  1.4.1 Effective Singular Values  41
  1.4.2 Noise Significance Level  42
  1.4.3 Least Squares Data Fitting  42
  1.4.4 Variations of Information Theoretic Criteria  44
1.5 Detection Techniques Using Multiple Measurements  46
1.5.1 Information Theoretic Criteria 46
1.5.2 Treating Eigenvalues as the Observations 49
1.5.3 Thresholding Eigenvalues 49
1.5.4 Bayesian Approach 50
1.6 Conclusions 52

REFERENCES 53

2 ROBUSTNESS ISSUES IN ADAPTIVE BEAMFORMING AND HIGH-RESOLUTION DIRECTION FINDING 63
Alex B. Gershman
2.1 Introduction 63
2.2 Robust Adaptive Beamforming 64
  2.2.1 Required Types of Robustness 64
  2.2.2 Conventional Solutions 66
  2.2.3 Robust Ad-Hoc Solutions 70
  2.2.4 Robust Solutions Based on Optimization of the Worst-Case Performance 75
  2.2.5 Numerical Examples 82
2.3 Robust Direction Finding 85
  2.3.1 Required Types of Robustness 85
  2.3.2 Conventional Subspace Methods 86
  2.3.3 Direction Finding in Partly Calibrated Sensor Arrays 89
  2.3.4 Numerical Examples 98
2.4 Conclusions 100

REFERENCES 101

3 PARAFAC TECHNIQUES FOR HIGH-RESOLUTION ARRAY PROCESSING 111
Xiangqian Liu and Nicholas Sidiropoulos
3.1 Introduction 111
  3.1.1 Bilinear Decomposition 112
  3.1.2 Trilinear Decomposition 113
  3.1.3 An Example 114
  3.1.4 Generalization 116
3.2 Uniqueness of Low Rank Decomposition 116
  3.2.1 fc-Rank 116
  3.2.2 Sufficient Conditions 118
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3</td>
<td>Necessary Conditions</td>
<td>119</td>
</tr>
<tr>
<td>3.3</td>
<td>Algorithms for Low-Rank Decomposition</td>
<td>120</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Trilinear ALS (TALS)</td>
<td>120</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Quadrilinear ALS (QALS)</td>
<td>120</td>
</tr>
<tr>
<td>3.4</td>
<td>Application in Multiple Invariance Sensor Array Processing (MI-SAP)</td>
<td>121</td>
</tr>
<tr>
<td>3.4.1</td>
<td>MI-SAP Modeling</td>
<td>121</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Identifiability Results for MI-SAP</td>
<td>124</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Special Cases</td>
<td>124</td>
</tr>
<tr>
<td>3.5</td>
<td>Application in Blind Reception of Frequency Hopped Signals</td>
<td>126</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Frequency Hopped Spread Spectrum Data Model</td>
<td>126</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Hop-free Subset Detection</td>
<td>128</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Direction-of-Arrival Estimation</td>
<td>130</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Single User Tracking</td>
<td>131</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Simulations</td>
<td>135</td>
</tr>
<tr>
<td>3.6</td>
<td>Joint DOA and Hop Timing Estimation</td>
<td>138</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Another View of the Data Model</td>
<td>138</td>
</tr>
<tr>
<td>3.6.2</td>
<td>The DP-2DHR Algorithm</td>
<td>140</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Simulations</td>
<td>142</td>
</tr>
<tr>
<td>3.7</td>
<td>Conclusions and Open Problems</td>
<td>143</td>
</tr>
</tbody>
</table>

REFERENCES 147

4 HIGH-RESOLUTION NONPARAMETRIC SPECTRAL ANALYSIS: THEORY AND APPLICATIONS 151

Erik G. Larsson, Jian Li and Petre Stoica

4.1 Introduction 151
4.2 The Spectral Estimation Problem 152
4.3 Nonparametric Spectral Analysis via Weighted Least-Squares 153
  4.3.1 The Discrete Fourier Transform (DFT) Method 156
  4.3.2 The Averaged Fourier Method 156
  4.3.3 The Capon Method 156
  4.3.4 The APES Method 157
  4.3.5 MMSE Spectral Estimation 158
4.4 Matched-Filter bank Interpretations 160
  4.4.1 DFT and Averaged DFT 161
  4.4.2 Capon 161
  4.4.3 APES 162
4.5 Extensions to Two-Dimensional Data 162
5 MULTIDIMENSIONAL HIGH-RESOLUTION PARAMETER ESTIMATION WITH APPLICATIONS TO CHANNEL SOUNDING 253
Martin Haardt, Reiner S. Thoma, and Andreas Richter

5.1 Introduction 253
5.2 Multidimensional Data Model 258
  5.2.1 il-Dimensional Invariance Structure 259
  5.2.2 Real-Valued Subspace Estimation 261
5.3 $R-D$ Unitary ESPRIT with Colored Noise 267
  5.3.1 $R$ Transformed Invariance Equations 268
  5.3.2 Covariance Approach 269
  5.3.3 Square-Root Approach 271
  5.3.4 Equivalence of both Subspace Estimates 273
  5.3.5 $R-D$ Smoothing as a Preprocessing Step 275
  5.3.6 Simultaneous Schur Decomposition (SSD) 276
  5.3.7 Estimation of the Path Amplitudes 279
  5.3.8 Truncated Signal Subspace Estimation 282
  5.3.9 Unitary ESPRIT for CUBA Configurations 285
  5.3.10 Antenna Array Calibration 288
5.4 Multidimensional Propagation Measurements and Parameter Estimation 296
  5.4.1 Wireless Channel Characteristics 296
  5.4.2 Multidimensional Parametric Channel Model 298
  5.4.3 Multidimensional Real-Time Channel Sounding 300
  5.4.4 Antenna Array Architecture Design and Calibration 303
  5.4.5 Multidimensional Joint Channel Parameter Estimation 312
  5.4.6 Measurement Examples 320
5.5 Conclusions 331

REFERENCES 333

6 HIGH-RESOLUTION SPACE-TIME SIGNAL PROCESSING FOR RADAR 339
Fredrik Athley, Mats Viberg and Jonny Eriksson

6.1 Introduction 339
6.2 Pulsed Doppler Radar 341
6.3 Sensor Arrays 343
  6.3.1 Spatial Data Model 343
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.2</td>
<td>Signal and Noise Models</td>
<td>347</td>
</tr>
<tr>
<td>6.4</td>
<td>Problem Formulation</td>
<td>349</td>
</tr>
<tr>
<td>6.5</td>
<td>Estimation Using the 2-D Model</td>
<td>352</td>
</tr>
<tr>
<td>6.5.1</td>
<td>General CRB for Parameterized Signals</td>
<td>352</td>
</tr>
<tr>
<td>6.5.2</td>
<td>CRB for the 2-D Model</td>
<td>354</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Asymptotic CRB for the 2-D Model</td>
<td>355</td>
</tr>
<tr>
<td>6.5.4</td>
<td>2-D Maximum Likelihood Estimation</td>
<td>356</td>
</tr>
<tr>
<td>6.5.5</td>
<td>2-D Weighted Least Squares</td>
<td>359</td>
</tr>
<tr>
<td>6.5.6</td>
<td>Performance Analysis</td>
<td>361</td>
</tr>
<tr>
<td>6.6</td>
<td>Estimation Using a Decoupled 1-D/l-D Model</td>
<td>362</td>
</tr>
<tr>
<td>6.6.1</td>
<td>CRB for the 1-D Models</td>
<td>362</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Asymptotic CRB for the 1-D Models</td>
<td>363</td>
</tr>
<tr>
<td>6.6.3</td>
<td>1-D/l-D Weighted Least Squares</td>
<td>364</td>
</tr>
<tr>
<td>6.7</td>
<td>Computing the Estimates</td>
<td>367</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Local Optimization</td>
<td>367</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Computing Initial Estimates</td>
<td>368</td>
</tr>
<tr>
<td>6.8</td>
<td>Numerical Examples and Simulation Results</td>
<td>369</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Cramer-Rao Bounds</td>
<td>370</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Performance of the WLS Estimators</td>
<td>370</td>
</tr>
<tr>
<td>6.9</td>
<td>Conclusions</td>
<td>377</td>
</tr>
</tbody>
</table>

**APPENDICES**

6.A Derivation of the 2-D CRB 379
6.B Derivation of the Asymptotic 2-D CRBs 382

**REFERENCES**

7 EEG/MEG Spatio-Temporal Dipole Source Estimation and Sensor Array Design 393

Aleksandar Dogandzic and Arye Nehorai

7.1 Introduction 393
7.2 Source and Measurement Models 396
7.2.1 Source Model 396
7.2.2 Measurement Model 398
7.3 Maximum Likelihood Estimation 399
7.3.1 Simultaneous Estimation of the Dipole Parameters and Noise Covariance 399
7.3.2 Ordinary and Generalized Least Squares 402
7.3.3 Estimated Generalized Least Squares 402 7.3.4 ML versus OLS 403

7.4 Nonparametric Basis Functions 405

7.5 Scanning Methods 406

7.6 Fisher Information Matrix and Cramer-Rao Bound 408

7.7 Goodness-of-fit Measures 411

7.8 EEG/MEG Sensor Array Design 412
  7.8.1 Reparametrization Invariance 413
  7.8.2 Relationship between Optimal Array Design and Information Theory 414

7.9 Numerical Examples 415

7.10 Conclusions 426

APPENDICES 427

7.A ML Estimation 427

7.B Parameter Identifiability 428

7.C Asymptotic Properties of the OLS Estimates 430

7.D ML versus OLS 431

7.E Nonparametric Basis Functions 432

7.F Scanning 433

7.G Derivation of the Fisher Information Matrix 435

REFERENCES 437