TIMBER DESIGNERS' MANUAL

E. C. Ozelton & J. A. Baird

Third Edition revised by

E. C. Ozelton

Blackwell Science

Contents

	Prefa	ce	X1
	Ackno	pwledgements	xii
	About	t the Authors	xiii
1.	The 1	Materials Used in Timber Engineering	1
	1.1	Introduction	1
	1.2	Timber	2
	1.3	Plywood ,	22
	1.4	Particleboard, oriented strand board, cement-bonded particleboard and	
		wood fibreboards	26
	1.5	Engineered wood products -	31
	1.6	Mechanical fasteners	34
	1.7	Adhesives used in timber engineering	38
2.	Stres	s Levels for Solid Timber	41
	2.1	Introduction	41
	2.2	Derivation of basic stress and characteristic strength values	42
	2.3	Modulus of elasticity and shear modulus •	45
	2.4	Grade stress	46
	2.5	Load sharing	48
	2.6	Moisture content	48
3.	Load	ing	50
	3.1	Types of loading	50
	3.2	Load duration	50
	3.3	Concentrated loadings	51
	3.4	Dead loading	52
	3.5	Imposed loadings for floors	52
	3.6	Imposed loadings for roofs	53
	3.7	Snow loading	53
	3.8	Roof loadings on small buildings	54
	3.9	Wind loading	55
	3.10	Unbalanced loading	59
	3.11	Combinations of loading	60
	3.12	Special loadings	60
4.		Design of Beams: General Notes	64
	4.1	Related chapters	64
	4.2	Design considerations	64

	4.3	Effective design span	65
	4.4	Load-sharing systems	65
	4.5	Load-duration factor	68
	4.6	Lateral stability	69
	4.7	Moisture content	70
	4.8	Bending stresses	71
	4.9	Depth and form factors	72
	4.10	Bearing	73
	4.11	Shear	75
	4.12	The effect of notches and holes	77
	4.13	Shear in beams supported by fastenings and in eccentric joints	80
	4.14	Glue-line stresses	83
	4.15	Deflection CG:	86
	4.16	Bending and shear deflection coefficients	95
5.	Beam	s of Solid Timber	99
	5.1	Introduction	99
	5.2	General design	99
	5.3	Principal beams of solid timber	100
	5.4	Load-sharing systems of solid timber	103
	5.5	Geometrical properties of solid timber sections in service	
		classes 1 and 2	106
	5.6	Principal members bending about both the x — x and y - y axes	106
6.	Multi	ple Section Beams	117
	6.1	Introduction	117
	6.2	Modification factors	117
	6.3	Connection of members	117
	6.4	Standard tables	122
	6.5	Design example	122
7.	Glula	m Beams	123
. •	7.1	Introduction	123
	7.2	Timber stress grades for glulam	126
	7.3	Strength values for horizontally or vertically laminated beams	127
	7.4	Appearance grades for glulam members	130
	7.5	Joints in laminations	132
	7.6	Choice of glue for glulam	136
	7.7	Preservative treatment	136
	7.8	Standard sizes	137
	7.9	Tables of properties and capacities of standard size in C24 grade	137
	7.10	TvDical designs	150
	7.11	The calculation of deflection and bending stress of glulam beams with	
		tapered profiles	152
8.	Thin	Web Beams	164
	8.1	Introduction	164
	8.2	Primary design considerations	164
		=	

			Contents	vii	
	8.3	Design examples .		172	
	8.4	Web splices -		177	
	8.5	Web stiffeners		178	
	8.6	Holes or slots in ply web beams		180	
	8.7	Proprietary sections .		181	
9.	Later	al Stability of Beams		190	
	9.1	Introduction		190	
	9.2	Buckling of rectangular solid and glulam sections		190	
	9.3	Design examples		195	
	9.4	Partially restrained thin web I beams		199	
10.	Struc	tural Composite Lumber		201	
	10.1			201	
	10.2	Kerto-LVL (Laminated Veneer Lumber)		201	
	10.3	Versa-Lam SP LVL (Laminated Veneer Lumber)		202	
	10.4	Parallam PSL (Parallel Strand Lumber)		204	
	10.5	TimberStrand (Laminated Strand Lumber)		206	
11.	Solid	Timber Decking		211	
	11.1	Introduction		211	
	11.2	Span and end joint arrangements		211	
	11.3	Nailing of decking •		214	
	11.4	Design procedure		217	
	11.5	Species of decking, grades and capacities		218	
	11.6	Example of design of decking		218	
12.	Defle	ction. Practical and Special Considerations		221	
	12.1	Deflection limits		221	
	12.2	Camber '		222	
	12.3	Deflection due to dead load only on uncambered beams		223	
	12.4	Deflection due to wind uplift on roofs or wind on walls		223	
	12.5	Deflection stages due to sequence of erection		224	
	12.6	Examples of cases which require special consideration in			
		deflection/camber calculations		224	
	12.7	Effect of deflection on end rotation of beams		234	
13.	Tensi	on Members		236	
	13.1	Axial tensile loading		236	
	13.2			236	
	13.3	Effective cross section		236	
	13.4	Combined bending and tensile loading		237	
	13.5	Tension capacities of solid timber sections containing split ring			
		or shear plate connectors		240	
14.	Gene	eral Design of Compression Members		242	
	14.1	Related chapters		242	
	142	Design considerations		242	

viii Contents

	14.3	Effective length	242
	14.4	Permissible compressive stress -	245
	14.5	Maximum slenderness ratio	246
	14.6	Combined bending and axial loading	246
	14.7	Effective area for compression -	248
	14.8	Deflection and sway of columns	249
	14.9	· · · · · · · · · · · · · · · · · · ·	249
	14.10	Bearing at an angle to grain	251
15.	Colur	nns of Solid Timber	252
	15.1	Introduction	252
	15.2	Design example -	252
	15.3	Deflection of compression members	259
16.	Multi	-member Columns	261
	16.1	Introduction	261
	16.2	Combined bending and axial loading for tee sections	261
	16.3	Tee section: design example •	262
	16.4	Spaced columns	265
	16.5	Example of spaced column design	267
	16.6	Compression members in triangulated frameworks	269
17.	Glula	m Columns	271
	17.1	Introduction	271
	17.2	Timber stress grades for glulam columns	271
	17.3	Joints in laminations	273
	17.4	Example of combined bending and compression in a glulam	
		section	273
	17.5	Check on strength of a finger joint in combined bending and	
		compression	278
18.	Mech	anical Joints	280
	18.1	General	280
		Nailed joints	284
	18.3	Screw joints	290
		Bolted joints	295
	18.5	Toothed plate connector units	307
	18.6	Split ring and shear plate connectors	324
19.	Glue Joints, including Finger Joints 33		
	19.1	Introduction	336
	19.2	Types of adhesive used in timber engineering	337
	19.3	Quality control requirements. General glue joints	337
	19.4	The strength of a glue joint	v 341
	19.5	Structural finger joints	342
	19.6	Quality control requirements for structural finger joints	344
	19.7	The strength and design of finger joints	' 346

			Contents	IX
20.	Stress	Skin Panels		352
	20.1	Introduction		352
	20.2	Forms of construction		352
	20.3	Special design considerations		353
	20.4	Selecting a trial design cross section .		356
	20.5	Permissible stresses		356
	20.6	Self-weight of panel elements		357
	20.7	Typical design for double-skin panel		357
	20.8	Splice plates	•	363
	20.9	Typical design for single-skin panel		365
21.	Trusse	es		369
	21.1	Introduction		369
	21.2	Loading on trusses		375
	21.3	Types of members and joints ^ <		376
		Design of a parallel-chord truss ,		386
	21.5	Bowstring trusses		399
	21.6	Deflection of trusses -		408
	21.7	Coefficients of axial loading		411
22.	Struc	tural Design for Fire Resistance		430
	22.1	Introduction		430
	22.2	Properties of timber in fire		431
	22.3	Design method for the residual section		433
	22.4	Stress grade		433
	22.5	Ply web beams		434
	22.6	Connections <		434
	22.7	Testing for fire resistance		434
	22.8	Proprietary treatments for surface spread of flame		434
	22.9	Check on the fire resistance of a glulam beam		434
	22.10	Check on the fire resistance of a glulam column		435
23.	Cons	iderations of Overall Stability		438
	23.1	General discussion		438
	23.2	No sway condition		438
	23.3	With sway condition		440
	23.4	Diaphragm action		443
	23.5	Horizontal diaphragms		443
	23.6	Vertical shear walls		449
24.	Prese	rvation, Durability, Moisture Content		454
	24.1	Introduction: preservation		454
	24.2	Durability		454
	24.3	Amenability to preservative treatment		456
	24.4	Risk and avoidance		457
	24.5	Types of preservative		458
	24.6	Additional notes on preservation		460

x Contents

	24.7	Publications giving guidance or rules on when to preserve	463
	24.8	Moisture content	467
25.	Cons	siderations for the Structural Use of Hardwood	471
	25.1	Introduction	471
	25.2	Species/grades/strength classes	471
	25.3	Properties/characteristics	472
	25.4	Moisture content	472
	25.5	Connections	473
	25.6	Design data for oak	473
26.	Proto	otype Testing	477
	26.1	General	477
	26.2	Test factor of acceptance	478
	26.3	Test procedure	478
27.	Desig	gn to Eurocode 5	480
	27.1	Introduction •	480
	27.2	Symbols and notations	481
	27.3	Design philosophy ^	483
	27.4	Actions	484
	27.5	Material properties	487
	27.6	Ultimate limit states	_x 491
	27.7	Serviceability limit states	504
	27.8	Bibliography	508
	27.9	Design examples	508
28.	Misc	ellaneous Tables	521
	28.1	Weights of building materials	521
	28.2	Bending and deflection formulae	523
	28.3	Permissible lorry overhangs	535
	Index	;	538