STRUCTURAL TIMBER DESIGN to Eurocode 5

Jack Porteous BSC, MSC, DIC, PhD, CEng, MIStructE, FICE

Director Jack Porteous Consultancy

Abdy Kermani BSC, MSC, PhD, CEng, MIStructE, FIWSc

Professor of Timber Engineering Napier University, Edinburgh

Contents

	Prefe	ace			xi
1.	Tim	ber as a	Structural Material		1
	1.1	Introdu	1		
	12 The structure of timber				23
	13	1.3 Types of timber			
		1.3.1	Softwoods		3
		1.3.2	Hardwoods .	-	3
	1.4	Natural	characteristics of timber		4
		1.4.1	Knots		4
		1.4.2	Slope of grain		5
		1.4.3	Reaction wood		5
		1.4.4	Juvenile wood		6
		1.4.5	Density and annual ring wid	lths	6
		1.4.6	Conversion of timber		7
		1.4.7	Seasoning		11
		1.4.8	Seasoning defects		11
		1.4.9	Cracks and fissures		11
		1.4.10	Fungal decay		11
	15	Strengt	h grading of timber		11
		1.5.1	Visual grading		12
		1.5.2	Machine grading		12
		1.5.3	Strength classes		13
	1.6	Section sizes			16
	1.7	Engineered wood products (EWPs)			16
		1.7.1	Glued-laminated timber (glued-laminated timber)	ılam)	18
		1.7.2	Plywood		20
		1.7.3	Laminated veneer lumber (I	,	22
		L7.4 •	Laminated Strand Lumber (LSL), TimberStrand®	22
		1.7.5	Parallel Strand Lumber (PS)	L), Parallam®	25
		1.7.6	Oriented Strand Board (OSI	3)	25
		1.7.7	Particleboards and fibre con	nposites	35
		1.7.8	Thin webbed joists (I-joists)		37
		1.7.9	Thin webbed beams (Box b	· · · · · · · · · · · · · · · · · · ·	39
		1.7.10	Structural insulated panels (SIPs)	40
	1.8	-	nded timber	flooring	41
	1.9	Adhes	sive bonding of timber		43
	1.10	Preser	vative treatment for timber		45

	1.11	Fire saf	fety and resistance	46
	1.12	Referen	nces	48
2.	Intro	duction	to Relevant Eurocodes	50
	2.1		des: General structure	50
	2.2		de 0: Basis of structural design (ECO)	52
		2.2.1	Terms and definitions (ECO, 7.5)	52
		2.2.2	Basic requirements (ECO, 2.7)	53
		2.2.3	Reliability management (ECO, 2.2)	53
		2.2.4	Design working life (ECO, 2.3)	54
		2.2.5	Durability (ECO, 2.4)	54
		2.2.6	Quality management (ECO, 2.5)	55
		2.2.7	Principles of limit state design: General (ECO, 3.7)	55
		2.2.8	Design situations (ECO, 3.2)	56
		2.2.9	Ultimate limit states (ECO, 3.3)	56
		2.2.10	Serviceability limit states (ECO, 3.4)	56
		2.2.11	Limit states design (ECO, 3.5)	57
		2.2.12	Classification of actions (ECO, 4.1.1)	58
		2.2.13	Characteristic values of actions (ECO, 4.1.2)	58
		2.2.14	Other representative values of variable actions (ECO, 4.1.3)	59
		2.2.15	Material and product properties (ECO, 4.2)	60
		2.2.16	Structural analysis (ECO, 5.7)	60
		2.2.17	Verification by the partial factor method: General (ECO, 6.1)	62
		2.2.18	Design values of actions (ECO, $6.3.1$)	63
		2.2.19	Design values of the effects of actions (ECO, $6.3.2$)	63
		2.2.20	Design values of material or product properties (ECO, $6.3.3$)	64
		2.2.21	Factors applied to a design strength at the ULS	68
		2.2.22	Design values of geometrical data (ECO, $6.3.4$)	68 70
		2.2.23	Design resistance (ECO, $6.3.5$)	70 70
		2.2.24 2.2.25	Ultimate limit states (ECO, 6.4.1-6.4.5) Serviceability limit states: General (ECO, 6.5)	70 74
	23		de 5: design of timber structures - Part 1-1: General - Common	/4
			ad rules for buildings (EC5)	76
		2.3.1	General matters	76
		2.3.1	Serviceability limit states (EC5, 2.2.3)	77
		2.3.3	Load duration and moisture influences on strength (EC5, 2.3.2.1)	79
		2.3.4	Load duration and moisture influences on deformations (EC5, 2.3.2.2)	80
		2.3.5	Stress-strain relations (EC5, 3.1.2)	82
		2.3.6	Size and stress distribution effects (EC5, 3.2, 3.3, 3.4 and 6.4.3)	83
		2.3.7	System strength (EC5, 6.6)	85
	2.4	Symbol	ls	87
	2.5	Referen	nces	92
3.	Using	Mathca	nd® for Design Calculations	94
3.1 Introduction		•	94	
	3.2	What is Mathcad?		
	3.3 What does Mathcad do?		oes Mathcad do?	95
		3.3.1	A simple calculation .	95

		3.3.2 Definitions and variables3.3.3 Entering text	95 96
		3.3.4 Working with units	96
		3.3.5 Commonly used Mathcad functions	98
	3.4	Summary	100
	3.5	References	100
4.	Desig	gn of Members Subjected to Flexure	101
	4.1	Introduction	101
	4.2	Design considerations	101
	4.3	Design value of the effect of actions	103
	4.4	Member Span	103
	4.5	Design for Ultimate Limit States (ULS)	104
		4.5.1 Bending	104
		4.5.2 Shear	115 119
		4.5.3 Bearing (Compression perpendicular to the grain)	123
		4.5.4 Torsion	125
	4.6	4.5.5 Combined shear and torsion	125
	4.0	Design for Serviceability Limit States (SLS) 4.6.1 Deformation -	
		4.6.1 Deformation - 4.6.2 Vibration	125 129
	4.7	References	129
	4.8	Examples	133
_			155
5.		gn of Members and Walls Subjected to Axial or Combined Axial Flexural Actions	148
	5.1	Introduction	148
	5.2	Design considerations	148
	5.2 5.3	Design of members subjected to axial actions	150
	0.0	5.3.1 Members subjected to axial compression	150
		5.3.2 Members subjected to compression at an angle to the grain	157
		5.3.3 Members subjected to axial tension	162
	5.4	Members subjected to combined bending and axial loading	163
		5.4.1 Where lateral torsional instability due to bending about the major	
		axis will not occur	163
		5.4.2 Lateral torsional instability under the effect of bending about the	
		major axis	167
		5.4.3 Members subjected to combined bending and axial tension	168
	5.5	Design of Stud Walls	169
		5.5.1 Design of load-bearing walls	169
		5.5.2 Out of plane deflection of load-bearing stud walls (and columns)	174
	5.6	References	176
	5.7	Examples	177
6.	•	gn of Glued Laminated Members	205
	6.1	Introduction	205
	6.2	Design considerations	205
	6.3	General	207

		6.3.1	Horizontal and vertical glued-laminated timber	207
	<i>с</i> 1	6.3.2	Design methodology	207
	6.4		n of glued-laminated members with tapered, curved or pitched	011
		6.4.1	profiles (also applicable to LVL members)	211 212
		6.4.1 6.4.2	Design of single tapered beams Design of double tapered beams, curved and pitched cambered beams	212
		6.4.2 6.4.3	Design of double tapered beams, curved and pitched cambered beams Design of double tapered beams, curved and pitched cambered	210
		0.4.5	beams subjected to combined shear and tension perpendicular	
			to the grain	222
	6.5	Finger	6	222
	Annex		Deflection formulae for simply supported tapered and double	
			beams subjected to a point load at mid-span or to a uniformly	
			ited load.	222
	Annex		Graphical representation of factors k ? and k_v used in the derivation	
			bending and radial stresses in the apex zone of double tapered	
			and pitched cambered beams.	225
	6.6	Referen	nces •	226
	6.7	Examp	les	227
7.	Desig	n of Co	mposite Timber and Wood-Based Sections	248
	7.1	Introdu		248
	7.2		considerations	249
	7.3	-	of glued composite sections	249
		7.3.1	Glued thin webbed beams	249
		7.3.2	Glued thin flanged beams (Stressed skin panels)	260
	7.4	Referen	nces	268
	7.5	Examp	les	268
8.	Desig	n of Bu	ilt-Up Columns	292
	8.1	Introdu	-	292
	8.2	Design	considerations	292
	8.3	Genera	ıl	293
	8.4	Bendir	ng stiffness of built-up columns	294
		8.4.1	The effective bending stiffness of built-up sections about the	
			strong $(y-y)$ axis	295
		8.4.2	The effective bending stiffness of built-up sections about the	
			z-z axis	297
		8.4.3	Design procedure	299
		8.4.4	Built-up sections - spaced columns	303
		8.4.5	Built-up sections - latticed columns	308
	8.5		ned axial loading and moment	311
	8.6		of creep at the ULS	312
	8.7	Referen		313
	8.8	Examp	les	313
9.	0		bility Bracing, Floor and Wall Diaphragms	338
	9.1	Introdu		338
	9.2	Design	considerations	338

9.3	Lateral bracing	339
	9.3.1 General	339
	9.3.2 Bracing of single members (subjected to direct compression) by	
	local support	341
	9.3.3 Bracing of single members (subjected to bending) by local, support	344
	9.3.4 Bracing for beam, truss or column systems	345
9.4	Floor and roof diaphragms	348
	9.4.1 Limitations on the applicability of the method	348
	9.4.2 Simplified design procedure	349
9.5	The in-plane racking resistance of timber walls under horizontal and	
	vertical loading	351
	9.5.1 The in-plane racking resistance of timber walls using	
	Method B in EC5	352
9.6	References	357
9.7	Examples	358
10 Deci	gn of Metal Dowel Type Connections	372
10. Desi		372
10.1	10.1.1 Metal dowel type fasteners	372
10.2		375
10.2	e	515
10.5	formed using metal dowel fasteners	375
	10.3.1 Dowel diameter	382
	10.3.2 Characteristic fastener yield moment $(M_{\gamma} \mathbb{R}^{\wedge})$	382
	10.3.3 Characteristic Embedment strength (/h) "	383
	10.3.4 Member thickness, t_x and t_2	386
	10.3.5 Friction effects and axial withdrawal of the fastener	388
	10.3.6 Brittle failure	390
10.4		396
	10.4.1 The effective number of fasteners	396
	10.4.2 Alternating forces in connections	399
10.5	•	400
	10.5.1 Loaded parallel to the grain	400
	10.5.2 Loaded perpendicular to the grain	400
10.6	Examples of the design of connections using metal dowel type fasteners	401
10.7	Multiple shear plane connections	401
10.8	Axial loading of metal dowel connection systems	403
	10.8.1 Axially loaded nails	403
	10.8.2 Axially loaded bolts	406
	10.8.3 Axially loaded dowels	406
	10.8.4 Axially loaded screws	406
10.9	Combined laterally and axially loaded metal dowel connections	408
10.1		409
10.1	1 Frame analysis incorporating the effect of lateral movement in metal	
	dowel fastener connections	415
10.1		416
10.1	3 Examples	417

r

11.	Design	of Joints with Connectors	452 >		
	11.1	1.1 Introduction			
	11.2	Design considerations	452		
	11.3	Toothed-plate connectors	452		
		11.3.1 Strength behaviour	4-52		
	11.4	Ring and shear-plate connectors	459		
		11.4.1 Strength behaviour	459		
	11.5	Multiple shear plane connections	465		
	11.6	Brittle failure due to connection forces at an angle to the grain	466		
	11.7	Alternating forces in connections	466		
	11.8	Design strength of a laterally loaded connection	466		
		11.8.1 Loaded parallel to the grain	466		
		11.8.2 Loaded perpendicular to the grain	467		
		11.8.3 Loaded at an angle to the grain	468		
	11.9	Stiffness behaviour of toothed-plate, ring and shear-plate connectors	468		
	1 1.10				
		connections formed using toothed-plate, split-ring or shear-plate connectors	469		
	11.11	References	469		
	11.12	Examples	470		
12.		nt Capacity of Connections Formed with Metal Dowel Fasteners	483		
	or Connectors				
	12.1	Introduction	483		
	12.2	Design considerations	483		
	12.3	The effective number of fasteners in a row in a moment connection	484		
	12.4	Brittle failure			
	12.5	Moment behaviour in timber connections: rigid model behaviour	485		
		12.5.1 Assumptions in the connection design procedure	486		
		12.5.2 Connection design procedure	488		
		12.5.3 Shear strength and force component checks on connections			
		subjected to a moment and lateral forces	490		
	12.6	The analysis of structures with semi-rigid connections	497		
		12.6.1 The stiffness of semi-rigid moment connections	497		
		12.6.2 The analysis of beams with semi-rigid end connections	500		
	12.7	References	503		
	12.8	Examples	504		
	Appendix A: Weights of Building Materials				
	Append	lix B: Related British Standards for Timber Engineering in Buildings	530		
	Appendix C: Outline of Draft Amendment Al to EN 1995-1-1				
	Index				
	The Ex	ample Worksheets Disks Order Form	542		