

ELSEVIER GEO-ENGINEERING BOOK SERIES VOLUME 2

Coupled Thermo-Hydro-Mechanical-Chemical Processes in Geo-Systems

Fundamentals, Modelling, Experiments and Applications

Ove Stephansson

GeoForschungsZentrum, Telegrafenberg, Potsdam, Germany

Geo-Engineering Book Series Editor

John A. Hudson

Department of Earth Science and Engineering, Imperial College of Science, Technology and Medicine, London, UK

Lanru Jing

Department of Land and Water Resources Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden

2004

Amsterdam – Boston – Heidelberg – London – New York – Oxford Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo

Contents

Series Preface Preface About the Editors International and Organizing Committees	v vii ix xi
Introductory Article Coupled THM processes in geological systems and the DECOVALEX project CF. Tsang, O. Stephansson, F. Kautsky and L. Jing	3
Keynote Contributions Pre dicting solute transport in fractured rocks – processes, models and some concerns <i>I. Neretnieks</i>	19
Modelling gas flow through deformable fractured rocks S. Olivella. and E.E. Alonso	31
Research and application on coupled T-H-M-C processes of geological media in China – A review X-T. Feng, J. Liu and L. Jing	37
Coupled processes and petroleum geomechanics M.B. Dusseault	49
Some THMC controls on the evolution of fracture permeability D. Elsworth	63
Detection of hydraulically created permeable structures in HDR/HWR reservoir by high resolution seismic mapping techniques <i>H. Niitsuma</i>	73
Recent study of coupled processes in geotechnical and geoenvironmental fields in China S. Wang and E. Wang	81
Theme 1 Coupled T-H-M-C Processes in Radioactive Waste Disposal Systems	
<u>Theme 1-1 DECOVALEX III/BENCHPAR Projects- Task 1</u> The FEBEX benchmark test. Case definition and comparison of different modelling approaches E.E. Alonso and J. Alcoverro	95
Modelling the response of the bentonite in the FEBEX heater experiment T.S. Nguyen, A.P.S. Selvadurai and G. Armand	113
THM simulation of the full-scale in-situ engineered barrier system experiment in Grimsel Test Site in Switzerland Y. Sugita, M. Chijimatsu, A. Ito, H. Kurikami, A. Kobayashi and Y. Ohnishi	119
Hydromechanical response of jointed host granitic rock during excavation of the FEBEX tunnel S. Sobolik, S. Webb, A. Kobayashi and M. Chijimatsu	125
Analyses of coupled hydrological-mechanical effects during drilling of the FEBEX tunnel at Grimsel J. Rutqvist, A. Rejeb, M. Tijani and CF. Tsang	131
Thermomechanical model for compacted bentonite P. Jussila	137

xiii

A fully coupled three-dimensional THM analysis of the FEBEX in situ test with the ROCMAS code: Prediction of THM behavior in a bentonite barrier J. Rutqvist and CF. Tsang	143
A discrete approach to modelling hydromechanical rock response of FEBEX tunnel excavation (Grimsel Underground Research Laboratory, Switzerland) V. Merrien-Soukatchoff, I. Kadiri, K. Su and Y. Guglielmi	149
<u>Theme 1-2 DECOVALEX III/BENCHPAR Projects- Task 2</u> Measuring thermal, hydrological, mechanical, and chemical responses in the Yucca Mountain Drift Scale Test R. Datta, D. Barr and W. Boyle	155
Analysis of stress and moisture induced changes in fractured rock permeability at the Yucca Mountain Drift Scale Test J. Rutqvist, CF. Tsang and Y. Tsang	161
Thermal-mechanical modeling of a large-scale heater test S.M. Hsiung, A.H. Chowdhury and M.S. Nataraja	167
Numerical simulation of thermal-hydrological processes observed at the Drift-Scale Heater Test at Yucca Mountain, Nevada <i>R.T. Green and S.Painter</i>	175
THM analysis of a heating test in a fractured tuff S. Olivella, A. Gens and C. Gonzalez	181
Comparative analyses of predicted and measured displacements during the heating phase of the Yucca Mountain Drift Scale Test A. Millard and J. Rutqvist	187
Theme 1-3 DECOVALEX III/BENCHPAR Projects- Task 3: BMT1/WP2 Building confidence in the mathematical models by calibration with a T-H-M field experiment M. Chijimatsu, L. Jing, A. Millard, T.S. Nguyen, A. Rejeb, J. Rutqvist, M. Souley and Y. Sugita	193
Numerical simulation of variably coupled thermo-hydro-mechanical processes in fractured porous media M. Kohlmeier, R. Kaiser and W. Zielke	199
Numerical implementation of thermally and hydraulically coupled processes in non-isothermal porous media J. De Jonge, M. Xie and O. Kolditz	205
Evaluation of THM coupling on the safety assessment of a nuclear fuel waste repository in a homogeneous hard rock A. Millard, A. Rejeb, M. Chijimatsu, L. Jing, J. De Jonge, M. Kohlmeier, T.S. Nguyen, J. Rutqvist, M. Souley and Y. Sugita	211
Evaluation of the impact of thermal-hydrological-mechanical couplings in bentonite and near-field rock barriers of a nuclear waste repository in sparsely fractured hard rock J. Rutqvist, M. Chijimatsu, L. Jing, A. Millard, T.S. Nguyen, A. Rejeb, Y. Sugita and C.F. Tsang	217
Implications of coupled thermo-hydro-mechanical processes on the safety of a hypothetical nuclear fuel waste repository T.S. Nguyen, M. Chijimatsu, J. De Jonge, L. Jing, M. Kohlmeier, A. Millard, A. Rejeb, J. Rutqvist, M. Souley and Y. Sugita	225

xiv

and a strange water and a strange with the strange of the strange of the strange of the strange of the strange	1998 1997 1997 1997 1997 1997 1997 1997
[1]	

xv

<u>Theme 1-4 DECOVALEX III/BENCHPAR Projects- Task 3: BMT2/WP3</u> Development of a methodology to quantify the importance of hydro-mechanical processes in radionuclide migration assessments P. Blum, R. Mackay and M.S. Riley	231
Understanding the impact of hydro-mechanical coupling on performance assessment of deep waste disposal <i>P. Blum, R. Mackay and M.S. Riley</i>	237
Impact of flow and transport coupling in the upscaling of transport parameters for performance assessment in the context of nuclear waste disposal J.J. Gómez-Hernández and E.F. Cassiraga	243
Upscaling the THM properties of a fractured rock mass using a modified crack tensor theory V. Guvanasen and T. Chan	251
Effect of the fracture geometry on the coupled phenomena in large scale A. Kobayashi, Y. Sugita and M. Chijimatsu	257
Upscaling of normal stress-permeability relationships for fracture networks obeying fractional levy motion H.H. Liu, J. Rutqvist, Q. Zhou and G.S. Bodvarsson	263
A block-scale stress-permeability relationship of a fractured rock determined by numerical experiments K.B. Min, J. Rutqvist, CF. Tsang and L. Jing	269
Hydro-mechanical upscaling of a fractured rockmass using a 3D numerical approach A. Thoraval and V. Renaud	275
Thermo-Mechanical effects on hydraulic conductivity in a nuclear waste repository setting J. Öhman, J. Antikainen and A. Niemi	281
<u>Theme 1-5 DECOVALEX III/BENCHPAR Projects- Task 3: BMT3/WP4</u> A finite-element study of potential coupled hydromechanical effects of glaciation on a crystalline rock mass T. Chan, F.W. Stanchell, T. Wallroth, J. Hernelind and G. Boulton	287
Thermo-hydro-mechanical impacts of coupling between glaciers and permafrost <i>G. Boulton and J. Hartikainen</i>	293
Thermo-hydro-mechanical (T-H-M) impacts of glaciation and implications for deep geologic disposal of nuclear waste G. Boulton, T. Chan, R. Christiansson, L.O. Ericsson, J. Hartikainen, M.R. Jensen, F.W. Stanchell and T. Wallroth	299
<u>Theme 1-6 Radioactive Waste Disposal – Engineered Barrier Systems</u> Temperature influence on the mechanical behaviour of a compacted bentonite M.V. Villar and A. Lloret	305
Impact of in-situ parameters and boundary conditions on the thermal-hydro-mechanical behaviour of a clay engineered barrier system <i>N. Barnel, T. Lassabatère, C. Le Potier and P. Sémété</i>	311
Analysis of the THMC behaviour of compacted swelling clay for radioactive waste isolation A. Gens, L. do N. Guimarães, S. Olivella and M. Sánchez	317
A new mechanistic approach to simulating swelling processes in bentonite materials M. Xie, W. Wang, J. De Jonge and O. Kolditz	323

Application of a THM-coupled code to transport processes in a swelling bentonite buffer T. Nowak, H. Shao and M. Wallner	329
Drying and resaturation of the bentonite barrier in a nuclear waste repository. Analyses based on an analytical solution <i>J. Claesson</i>	335
Fabric changes of a pellet-based bentonite buffer material and their effects on mechanical behaviour C. Hoffmann, E.E. Alonso and E. Romero	341
<u>Theme 1-7 Radioactive Waste Disposal – Geological Barriers and Repositories</u> A conceptual and numerical model for thermal-hydrological-chemical processes in the Yucca Mountain Drift Scale Test E.L. Sonnenthal, N.F. Spycher, M. Conrad and J. Apps	347
A research program for numerical experiments on the coupled thermo-hydro-mechanical and chemical processes in the near-field of a high-level radioactive waste repository A. Ito, M. Yui, Y. Sugita and S. Kawakami	353
GeoMod - An integrated geoscientific model of the Äspö Hard Rock Laboratory, Sweden R. Christiansson, J.A. Hudson, J. Berglund, M. Laaksoharju, H. Hakami, P. Vidstrand and J. Sundberg	359
Prototype code development for numerical experiments on the coupled thermo-hydro-mechanical and Chemical processes in the near-field of a high-level radioactive waste repository A. Neyama, A. Ito, M. Chijimatsu, Y. Ishihara, T. Hishiya, M. Yui, Y. Sugita and S. Kawakami	365
Modelling three phase hydro-mechanical coupling in porous media: Application to a real scale experiment G. Klubertanz, J. Croisé, M. de Combarieu and K. Ando	371
T-H-M modelling of the prototype experiment at Äspö HRL (Sweden) A. Ledesma and G. Chen	377
<u>Theme 1-8 Radioactive Waste Disposal – Fundamentals and Applications</u> Interpretation of some in-situ tracer experiments in fractured crystalline rock at Äspö Hard Rock Laboratory 1. Neretnieks	383
The on-going pillar stability experiment at the Äspö Hard Rock Laboratory, Sweden C. Andersson, M. Rinne, I. Staub and T. Wanne	389
Algorithms for parallel FEM modelling of thermo-mechanical phenomena arising from the disposal of the spent nuclear fuel R. Blaheta, P. Byczanski, R. Kohut and J. Starý	395
Thermo-mechanical modeling of a subsurface interim nuclear waste storage: Behaviour in working conditions G. Thouvenin and A. Millard	401
Effect of coupling behavior of the near field on groundwater flow of the far field for geological disposal of high-level radioactive waste <i>H. Kurikami, A. Kobayashi, M. Chijimatsu, Y. Sugita and Y. Ohnishi</i>	407
Impact of temperature increase on nuclide transport in crystalline rock on the near field scale H. Cheng and V. Cvetkovic	413

xvi

6-56

	xvii
Thermo-mechanical simulations of pillar spalling in SKB APSE test by FRACOD <i>M. Rinne, B. Shen, H.S. Lee and L. Jing</i>	425
Theme 2 Fundamentals of Modelling Coupled T-H-M-C Processes of Geosystems	
<u>Theme 2-1 Fundamentals – Modelling tool</u> T-H-M-C modelling of rock mass behaviour - 1: The purposes, the procedures and the products J. Andersson and J.A. Hudson	433
T-H-M-C modelling of rock mass behaviour - 2: The input data and rock mass partitioning J.A. Hudson and J. Andersson	439
Simulation of consolidation and transport processes in clayey rocks M.G. Khramchenkov	445
Verification and validation of a three-dimensional finite-element code for coupled T-H-M-C modelling in fractured rock masses T. Chan, V. Guvanasen and F.W. Stanchell	451
Water flow and diffusion problem in bentonite: Molecular simulation and homogenization analysis Y. Ichikawa, S. Prayongphan, K. Kawamura and K. Kitayama	457
Analysis of the hydraulic interaction between clay buffer and host rock in a large scale test H.R. Thomas, P.J. Cleall, N. Chandler, D. Dixon and H.P. Mitchell	465
Modelling groundwater pressure and thermal loading in three-dimensional discontinuous deformation analysis Q.H. Jiang, M.R. Yeung and N. Sun	471
Theme 2-2 Fundamentals – Material Characterization and Models	
Penetration-induced pore pressure magnitudes – methods to determine transport parameters from terrestrial and marine penetrometer testing D. Elsworth, D.S. Lee, H. Long and P.B. Flemings	477
A double-porosity poroelastic model to relate P-wave attenuation to fluid flow in vuggy carbonate rock J. Parra, C. Hackert and S. Pride	483
Thermo-mechanical yielding of a clay C. Cekerevac and L. Laloui	489
An elastoplastic damage model for unsaturated argillites J.F. Shao, Y. Jia and D. Kondo	495
Study on time-temperature equivalent principle for rocks Q. Liu, C. Wang and T. Yamaguchi	501
On the significance of hydrodynamic control for radionuclide retention in fractured porous media V. Cvetkovic	507
<u>Theme 2-3 Fundamentals – Mechanics of Fractured and Porous Geological Media</u> Fundamental thermodynamic requirements for porous media description T.J.T. Spanos, M.B. Dusseault and N. Udey	513
Modelling contamination of clays N. Boukpeti, R. Charlier and T. Hueckel	523

xviii

Dependence of subcritical crack growth in rocks on water vapor pressure Y. Nara and K. Kaneko	529
Thermomechanical modelling of microstructured porous media with inclusions <i>P. Giovine</i>	535
Analysis of mechanical and hydraulic properties of cracked structure by the ratio of crack opening dependency (RCOD) A. Sato, Y. Hirakawa and K. Sugawara	541
Characterizing in the laboratory permeability changes induced by deviatoric stress in clayey rocks C. Coll, J. Desrues, P. Bésuelle and G. Viggiani	547
Coupled thermal, hydraulic and mechanical simulation with a theoretical model for swelling characteristics <i>H. Komine, H. Kurikami, M. Chijimatsu, A. Kobayashi, Y. Sugita and Y. Ohnishi</i>	553
On the constitutive modelling of thermo-hydro-mechanical coupling in elastic media with double porosity N. Khalili and A.P.S. Selvadurai	559
Simulation of coupled fluid flow and solute transport in a rough fracture J. Wang and Z. Zhou	565
Theme 3 Coupled T-H-M-C processes for Oil/Gas Reservoir Engineering	
Coupled thermo-mechano-chemical processes in shales: The petroleum borehole <i>M.B. Dusseault</i>	573
A coupled mechanical-thermal-physico-chemical model for the study of time-dependent wellbore stability in shales S.K. Choi, C.P. Tan and R. Freij-Ayoub	581
Mechanical behaviour of chalk reservoirs: Numerical modelling of water sensitivity effects F. Collin, Y.J. Cui, Ch. Schroeder and R. Charlier	587
Coupled analysis of sand stability in petroleum wellbores G. Han and M.B. Dusseault	593
Coupled analysis of damage formation around wellbores L. do N. Guimaraes, A. Gens and S. Olivella	599
Development of 3D FEM software for two-phase flow and its application to <i>Horonobe</i> natural gas Simulation H. Li, M. Sato and T. Sakai	605
A coupled flow-transport-deformation model for underground coal gasification J. Liu, C. Mallett, A. Beath, D. Elsworth and B. Brady	611
Investigating the relationship between fault permeability and effective stress using constraints from reservoir induced seismicity (RIS) R.J. Lunn, A.F do Nascimento and P. Cowie	617
Visual numerical simulation of coupled gas leak flow and coal-rock deformation in parallel coal seams <i>P. Sun</i>	623
A coupled geomechanical-reservoir model for the modelling of coal and gas outbursts S.K. Choi and M.B. Wold	629

ヽ *L* ド *L*

l j

]

1 F S T F S

Cej Sb7

> (s A

> E 7

> Ւ Բ *I*.

N 7

E ri F

T

N K

T fi A E V

	xix
Application of fluid-solid coupling theory in oil field casing damage forecast J. Liu and X.T. Feng	635
Theme 4 Coupled T-H-M-C Processes for Geothermal Energy Engineering	
Permeability in layered reservoirs: Field examples and models on the effects of hydrofracture propagation S.L. Brenner and A. Gudmundsson	643
The effect of thermal, chemical, hydrological, and mechanical factors on water/rock interaction in HDR geothermal systems S. Fomin, Z. Jing and T. Hashida	649
Coupled T (thermal) - H (hydrogical) - C (chemical) process of geothermal alteration, based on experimental and kinetic considerations J. Hara and N. Tsuchiya	655
Supercritical water/rock interactions and generation of artificial geothermal reservoirs in deep-seated high temperature rock masses <i>T. Hashida and T. Takahashi</i>	661
Coupled THM modeling of the stimulated permeable fractures in the near well at the Soultz-sous-Forêts site (France) A. Hosni, S. Gentier, A. Genter, J. Riss, D. Billaux and F. Dedecker	667
Effect of thermal deformation on fracture permeability in stressed rock masses T. Ito, D. Swenson and K. Hayashi	673
Numerical flow and heat transfer model of the porous-fracturing hydrothermal system of the paratoon thermal water field 1.1. Krashin, L.V. Semendyaeva, A.1. Zinin and G.A. Zinina	679
Microcrack formation and fracture characteristics in granite under supercritical water conditions T. Takahashi and T. Hashida	685
Estimation of critical pore pressure for shear slip of fractures at the Soultz Hot Dry Rock geothermal reservoir using microseismic multiplets <i>H. Moriya, H. Niitsuma and R. Baria</i>	691
Theme 5 Coupled T-H-M-C Processes in Geological Systems	
Modelling of sediment compaction during burial in sedimentary basins K. Bjørlykke, F. Chuhan, A. Kjeldstad, E. Gundersen, O. Lauvrak and K. Høeg	699
Vaporization-induced overpressures as a trigger for the hazardous collapse of lava domes D. Elsworth, B. Voight, J. Simmons, S. Young and B. Winkler	709
Bentonites from Ishirini (Libya) as natural analogues of long term thermal and chemical effects: Isotopic and fluid inclusion evidence I. Kolaříková and R. Hanus	715
The evolution of permeability in natural fractures – The competing roles of pressure solution and free-face dissolution A. Polak, H. Yasuhara, D. Elsworth J. Liu, A. Grader and P. Halleck	721

- Mediale

Earth crust structure as a result of rock fracturing at high pressure and temperature conditions 727 *V. Nikolaevskiy and I. Garagash*

XX	
Compaction and diagenesis of sandstones – The role of pressure solution H. Yasuhara, D. Elsworth and A. Polak	733
Measurement and 2D modeling of fluid control on the hydromechanical behavior of a fractured reservoir I. Kadiri, V. Merrien-Soukatchoff, Y. Guglielmi and K. Su	739
Theme 6 Coupled T-H-M-C Processes in Geotechnical and Environmental Engineering	
Simulation of coupled thermal and solute concentration effects on dense radioactive waste migration in deep aquifers A.I. Zinin, G.A. Zinina, V.M. Kurochkin, A.I. Rybalchenko, A.A. Zubkov and S.P. Pozdniakov	747
Study on coupling influences of concrete dam foundation seepage, stress, and creep on structure behaviors of dam body H. Guo, W. Xu and Z. Wu	753
Consolidation settlements above deep tunnels in fractured crystalline rock: Numerical analysis of coupled hydromechanical mechanisms E. Eberhardt, K. Evans, C. Zangerl and S. Loew	759
Coupled damage-seepage constitutive model of jointed rock masses and its engineering application Z. Zhu, W. Xu, A. Zhang and S. Wang	765
Mathematical modeling of borehole grouting in permafrost S. Fomin, V. Chugunov and T. Hashida	773
Thermo-hydrological analysis to predict the temperature distribution around a cold food storage cavern GS. Lee and CI. Lee	779
Deep weathering and alteration in granites – A product of coupled processes K. Thuro and M. Scholz	785
Modeling the thermo-mechanical processes of a typical Three-Gorges Dam section during and after construction J. Liu, XT. Feng, XL. Ding and CF. Dai	791
Modeling of the dilatancy - Saturation coupling during excavation and consolidation of an underground structure P. Kolmayer and C. Chavant	797
Author Index	805
Subject Index	807