Yakov Ben-Haim

Robust Reliability in the Mechanical Sciences

With 56 Figures

Springer
Contents

1 **Preview of Robust Reliability**
 1.1 Flexible Solar Panels .. 2
 1.2 Quality Control of Thin Shells 3
 1.3 Fatigue Failure and Reliability 4
 1.4 Plastic Extrusion Manufacturing 5
 1.5 Summary .. 6

2 **Convexity and Uncertainty**
 2.1 Complex Uncertainty and Limited Information: Four Examples 9
 2.2 Some Convex Models ... 11
 2.3 Expansion of Convex Models 15
 2.4 The Structure of Convex Sets 16
 2.4.1 Definition of Convexity 16
 2.4.2 Extreme Points and Convex Hulls 19
 2.4.3 Extrema of Linear Functions on Convex Sets 21
 2.4.4 Hyperplane Separation of Convex Sets 23
 2.4.5 Linear Systems Driven by Convex Input Sets 25
 2.5 Clustering of Uncertain Events: The Convexity Theorem 26
 2.6 Problems .. 27

3 **Robust Reliability of Static Systems**
 3.1 Introduction .. 31
 3.2 Beam With An Uncertain Distributed Load 32
 3.2.1 Uniform Load Uncertainty 32
 3.2.2 Shifted Uniform Load Uncertainty 34
 3.2.3 Load-Uncertainty Envelope 35
 3.2.4 Fourier Ellipsoid-Bound Uncertainty 37
 3.3 Cooling Fin in an Uncertain Flow Field: Reliability and Design 39
 3.3.1 Uniform Blade ... 39
 3.3.2 Optimal Thickness Profile 42
 3.3.3 Optimal Width and Thickness Profiles 43
 3.3.4 Minimum Weight Design 44
 3.3.5 Parameter Sensitivity of the Reliability 45
CONTENTS

3.4 Beam in Compression With Uncertain Initial Imperfections 47
 3.4.1 Band-Limited Energy-Bound Convex Model 47
 3.4.2 Fourier Representation of $\mathcal{V}(\alpha, N_0, N_1)$ 48
 3.4.3 Maximum Additional Bending Moment 49
 3.4.4 Critical-Energy Failure Criterion 50
3.5 Radial Buckling of Thin-Walled Shells: Reliability and Quality Control 52
 3.5.1 Localized Imperfections 53
 3.5.2 Fourier Ellipsoid-Bound 56
3.6 Reliability of Serial and Parallel Networks 58
3.7 Problems 61

4 Robust Reliability of Time-Varying Systems 65
 4.1 Mass and Spring System 65
 4.2 Seismic Safety of Secondary Equipment 69
 4.2.1 Dynamics 70
 4.2.2 Reliability with the Fourier-Envelope Model 72
 4.3 Multi-Dimensional Vibrating Structures 74
 4.3.1 Formulation 74
 4.3.2 Reliability: Hyperplane Separation 76
 4.3.3 Input Reliability 77
 4.4 Modal Reliability 78
 4.4.1 Formulation 79
 4.4.2 Coordinate Transformations 80
 4.5 Axially Loaded Thin-Walled Shell With Imperfect Initial Shape 81
 4.5.1 Dynamics 82
 4.5.2 Fourier Ellipsoid Bound 83
 4.6 Fatigue Failure and Reliability With Uncertain Loading 85
 4.6.1 Damage Evolution 86
 4.6.2 Uncertain Load Histories and Maximum Damage Increment 88
 4.6.3 The Least-Lifetime Recursion 89
 4.6.4 Least-Lifetime With Uncertain Harmonic Loads 90
 4.6.5 Fatigue Reliability With Uncertain Harmonic Loads 91
 4.6.6 Fatigue Reliability With Complex Uncertain Loads 92
 4.7 Problems 93

5 Fault Diagnosis, System Identification and Reliability Testing 97
 5.1 Benchmark Diagnostic Resolution: Simple Examples 98
 5.1.1 Formulation 98
 5.1.2 Single Measurement 100
 5.1.3 Variable Measurement Position 101
CONTENTS

5.1.4 Multiple Measurements .. 103
5.1.5 Hyperplane Separation ... 104
5.1.6 Reliability With Two Measurements 107

5.2 Multi-Hypothesis Diagnosis of Anomalous Inputs 109
5.2.1 Multi-Hypothesis Diagnosis 109
5.2.2 Criterion for Successful Diagnosis 111
5.2.3 Example .. 112
5.2.4 Robust Reliability .. 116

5.3 Least-Squares Estimation ... 118
5.3.1 Formulation of the Least-Squares Problem 119
5.3.2 Variation of the Least-Squares Solution 120
5.3.3 Estimating a Spectral Centroid 121
5.3.4 Reliability of “Regularized” Solutions 123

5.4 Multi-Hypothesis Diagnosis of a Crack 127
5.4.1 The Eigenvalue Equation 127
5.4.2 The Multi-Hypothesis Algorithm 128
5.4.3 Performance Criterion for the Diagnosis 129
5.4.4 A Useful Theorem .. 130
5.4.5 Reliability of the Diagnosis 132

5.5 Robust Reliability of Model-Order Determination 134
5.5.1 Formulation ... 134
5.5.2 Examples ... 136

5.6 Ill-Posed Problems .. 140
5.6.1 Column-Space Analysis .. 141
5.6.2 Multiplicity of Solutions 143

5.7 Selective Sensitivity .. 144
5.7.1 Basic Concept of Selective Sensitivity 144
5.7.2 Example: 2-Dimensional System 147
5.7.3 Example: Structural Integrity of a Building 148

5.8 Problems .. 152

6 Reliability of Mathematical Models 155
6.1 Models, Decisions and Reliability 155
6.2 Cooling Fin With Uncertain Geometry 156
6.3 Modal Truncation of a High-Dimensional Model 159
6.4 Robust Multi-Hypothesis System Identification 162
6.4.1 System Formulation .. 163
6.4.2 Uncertainty in the Nominal Model 163
6.4.3 Multi-Hypothesis Identification 164
6.4.4 Robustness of Asymptotic Multi-Hypothesis Algorithms 164
6.4.5 Robustness of Finite Multi-Hypothesis Algorithms 166
6.4.6 Hierarchical Multi-Hypothesis Algorithms 168

6.5 Problems .. 172
7 Convex and Probabilistic Models of Uncertainty 175
7.1 Uncertainty Is Not Necessarily Probabilistic: The Three-Box Riddle 176
7.2 Models of Uncertainty: A Comparison 179
7.3 Limitations of Probability 181
7.4 Sensitivity of the Failure Probability: An Example 184
 7.4.1 Uncertainty in the PDF of the Load 184
 7.4.2 Sensitivity of the Failure Probability 185
 7.4.3 Design Implications 187
7.5 Problems 187

8 Robust Reliability and the Poisson Process 189
8.1 The Poisson Distribution 189
8.2 Dynamic System with Uncertain Loads 192
8.3 Shells With Geometric Imperfections 195
8.4 Damage and Annealing Processes 196
 8.4.1 Birth and Death Process 196
 8.4.2 Damage and Annealing: I 198
 8.4.3 Damage and Annealing: II 198
8.5 Problems 201

9 Last But Not Final 205
9.1 Recapitulation of Robust Reliability 205
9.2 Subjective Calibration of Robust Reliability 206
 9.2.1 Calibration by Consequence Severity 207
 9.2.2 Calibration by the Information Gap 211
9.3 Reliability and Social Acceptability 215
9.4 Robustness as a Managerial Strategy 216

References 219

Author Index 227

Subject Index 229