Yakov Ben-Haim

Robust Reliability in the Mechanical Sciences

With 56 Figures

Contents

1	Pre	view of Robust Reliability	T
	1.1	Flexible Solar Panels	2
	1.2	Quality Control of Thin Shells	3
	1.3	Fatigue Failure and Reliability	4
	1.4	Plastic Extrusion Manufacturing	5
	1.5	Summary	6
2	Con	vexity and Uncertainty	9
	2.1	Complex Uncertainty and Limited Information: Four Examples	9
	2.2	Some Convex Models	11
	2.3	Expansion of Convex Models	15
	2.4	The Structure of Convex Sets	16
		2.4.1 Definition of Convexity	16
		2.4.2 Extreme Points and Convex Hulls	19
		2.4.3 Extrema of Linear Functions on Convex Sets	21
		2.4.4 Hyperplane Separation of Convex Sets	23
		2.4.5 Linear Systems Driven by Convex Input Sets	25
	2.5	Clustering of Uncertain Events: The Convexity Theorem	26
	2.6	Problems	27
3	Rol	oust Reliability of Static Systems	31
	3.1	Introduction	31
	3.2	Beam With An Uncertain Distributed Load	32
		3.2.1 Uniform Load Uncertainty	32
	•	3.2.2 Shifted Uniform Load Uncertainty	34
		3.2.3 Load-Uncertainty Envelope	35
		3.2.4 Fourier Ellipsoid-Bound Uncertainty	37
	3.3	Cooling Fin in an Uncertain Flow Field: Reliability and Design	39
		3.3.1 Uniform Blade	3 9
		3.3.2 Optimal Thickness Profile	42
		3.3.3 Optimal Width and Thickness Profiles	43
		3.3.4 Minimum Weight Design	44
		3.3.5 Parameter Sensitivity of the Reliability	45

xiv Contents

	3.4	Beam	in Compression With Uncertain Initial Imperfections .	47
		3.4.1	Band-Limited Energy-Bound Convex Model	47
		3.4.2	Fourier Representation of $\mathcal{Y}(\alpha, N_0, N_1)$	48
		3.4.3	Maximum Additional Bending Moment	49
		3.4.4	Critical-Energy Failure Criterion	50
	3.5	Radial	Buckling of Thin-Walled Shells: Reliability and Quality	
			bl	52
		3.5.1	Localized Imperfections	53
		3.5.2	Fourier Ellipsoid-Bound	56
	3.6		ility of Serial and Parallel Networks	58
	3.7		ms	61
4	Rok	nust Re	eliability of Time-Varying Systems	65
•	4.1		and Spring System	65
	4.1		c Safety of Secondary Equipment	69
	4.2	4.2.1		70
		4.2.1 $4.2.2$	Dynamics	70 72
	4.0			
	4.3		Dimensional Vibrating Structures	74
		4.3.1	Formulation	74
		4.3.2		76
		4.3.3	Input Reliability	77
	4.4		Reliability	78
		4.4.1	Formulation	79
		4.4.2	Coordinate Transformations	80
	4.5		y Loaded Thin-Walled Shell With Imperfect	
			Shape	81
		4.5.1	Dynamics	82
		4.5.2	Fourier Ellipsoid Bound	83
	4.6	Fatigu	e Failure and Reliability With Uncertain Loading	85
		4.6.1	Damage Evolution	86
		4.6.2	Uncertain Load Histories and Maximum Damage	
			Increment	88
		4.6.3	The Least-Lifetime Recursion	89
		4.6.4	Least-Lifetime With Uncertain Harmonic Loads	90
		4.6.5	Fatigue Reliability With Uncertain Harmonic	
			Loads	91
		4.6.6	Fatigue Reliability With Complex Uncertain Loads	92
	4.7	Proble	ems	93
5	Fau	lt Diag	gnosis, System Identification and Reliability	
_		ting	, , , ,	97
	5.1	Bench	mark Diagnostic Resolution: Simple Examples	98
		5.1.1	Formulation	98
		5.1.2	Single Measurement	100
		5.1.3	Variable Measurement Position	101

CONTENTS	XV

	5.1.4	Multiple Measurements	. 103
	5.1.5	Hyperplane Separation	. 104
	5.1.6	Reliability With Two Measurements	. 107
5.2	Multi-	Hypothesis Diagnosis of Anomalous Inputs	. 109
	5.2.1	Multi-Hypothesis Diagnosis	. 109
	5.2.2	Criterion for Successful Diagnosis	
	5.2.3	Example	
	5.2.4	Robust Reliability	
5.3	Least-	Squares Estimation	. 118
	5.3.1	Formulation of the Least-Squares Problem	. 119
	5.3.2	Variation of the Least-Squares Solution	. 120
	5.3.3	Estimating a Spectral Centroid	. 121
	5.3.4	Reliability of "Regularized" Solutions	. 123
5.4	Multi-	Hypothesis Diagnosis of a Crack	. 127
	5.4.1	The Eigenvalue Equation	. 127
	5.4.2	The Multi-Hypothesis Algorithm	
	5.4.3	Performance Criterion for the Diagnosis	
	5.4.4	A Useful Theorem	
	5.4.5	Reliability of the Diagnosis	
5.5	Robus	st Reliability of Model-Order Determination	
	5.5.1	Formulation	
	5.5.2	Examples	
5.6	Ill-Pos	sed Problems	
	5.6.1	Column-Space Analysis	
	5.6.2	Multiplicity of Solutions	
5.7	Select	ive Sensitivity	
	5.7.1	Basic Concept of Selective Sensitivity	
	5.7.2	Example: 2-Dimensional System	
	5.7.3	Example: Structural Integrity of a Building	
5.8	Proble	,	
	•		
Rel	iability	y of Mathematical Models	155
6.1	Model	ls, Decisions and Reliability	. 155
6.2	Coolir	ng Fin With Uncertain Geometry	. 156
6.3	Modal	l Truncation of a High-Dimensional Model	. 159
6.4	Robus	st Multi-Hypothesis System Identification	. 162
	. 6.4.1	System Formulation	. 163
	6.4.2	Uncertainty in the Nominal Model	. 163
	6.4.3	Multi-Hypothesis Identification	. 164
	6.4.4	Robustness of Asymptotic Multi-Hypothesis	
		Algorithms	. 164
	6.4.5	Robustness of Finite Multi-Hypothesis	
		Algorithms	. 166
	6.4.6	Hierarchical Multi-Hypothesis Algorithms	. 168
6.5	Proble	· · · · · · · · · · · · · · · · · · ·	179

xvi Contents

7	Cor	vex and Probabilistic Models of Uncertainty	175		
	7.1	Uncertainty Is Not Necessarily			
		Probabilistic: The Three-Box Riddle	176		
	7.2	Models of Uncertainty: A Comparison	179		
	7.3	Limitations of Probability	181		
	7.4	Sensitivity of the Failure Probability: An Example	184		
		7.4.1 Uncertainty in the PDF of the Load	184		
		7.4.2 Sensitivity of the Failure Probability	185		
		7.4.3 Design Implications	187		
	7.5	Problems	187		
8	Robust Reliability and the Poisson Process				
	8.1	The Poisson Distribution	189		
	8.2	Dynamic System with Uncertain Loads	192		
	8.3	Shells With Geometric Imperfections	195		
	8.4	Damage and Annealing Processes	196		
		8.4.1 Birth and Death Process	196		
		8.4.2 Damage and Annealing: I	198		
		8.4.3 Damage and Annealing: II	198		
	8.5	Problems	201		
9	Last But Not Final				
	9.1	Recapitulation of Robust Reliability	205		
	9.2	Subjective Calibration of Robust Reliability	206		
		9.2.1 Calibration by Consequence Severity	207		
		9.2.2 Calibration by the Information Gap	211		
	9.3	Reliability and Social Acceptability	215		
	9.4	Robustness as a Managerial Strategy	216		
\mathbf{R}	efere	nces	219		
A	utho	r Index	227		
Sı	Subject Index				