Rotary Wing Structural Dynamics and Aeroelasticity Second Edition

•

Richard L. Bielawa

EDUCATION SERIES Joseph A. Schetz Series Editor-in-Chief Virginia Polytechnic Institute and State University Blacksburg, Virginia

í

Published by American Institute of Aeronautics and Astronautics, Inc. 1801 Alexander Bell Drive, Reston, VA 20191

í

Contents

Preface	to the Second Edition	XV
Preface	to the First Edition	xvii
Chapter	1 Introduction	1
1.1	Rotary Wing vs Fixed Wing	1
1.2	Methodology	2
Chapter	2 Basic Analytical Techniques	5
2.1	Linear Single-Degree-of-Freedom System	5
2.2	Fourier Methods	14
2.3	Linear Two-Degree-of-Freedom System	19
2.4	Laplace Transform	35
2.5	Structural Damping	37
2.6	Matrices	42
2.7	Vector Calculus	52
2.8	Theorem of Coriolis	60
Chapter	3 Rotating Beams	67
3.1	Basic Equations for Bending	67
3.2	Reference Uniform Blade	79
3.3	Numerical Methods	84
3.4	Approximate Methods	95
3.5	Two-Bladed Rotor	101
3.6	Blade Torsion Dynamics	104
3.7	Coupling Effects	112
Chapter	4 Gyroscopics	127
4.1	Rotational Motion of a Solid Body	127
4.2	Simplified Gyroscope Equation	130
4.3	Precession and Nutation Characteristics	134
4.4	Gyroscopic Characteristics of Rotor Blades	138
Chapter	5 Drive System Dynamics ¹	149
5.1	Shaft Critical Speeds	149
5.2	Torsional Natural Frequencies of Shafting Systems	162
5.3	Special Devices	180

•

/

CONTENTS

Chapter	6 Fuselage Vibrations	189
6.1	Dynamic Loads	189
6.2	Harmonic Rotor Hub Loads	
6.3	Nonrotor Sources of Fuselage Excitation	
6.4	Rotor-Fuselage Interactions	222
Chapter	7 Methods for Vibration Control	239
7.1	Basic Modification Methodology	239
7.2	Modification of Blade Dynamics	
7.3	Modification of Fuselage Dynamics	246
7.4	Vibration-Suppression Devices	
Chapter	8 Vibration Test Procedures	275
8.1	Basic Shake Testing	275
8.2	Other Test Objectives	
Chapter	9 Stability Analysis Methods: Linear Systems	297
9.1	Basic Concepts	297
9.2	Basic Tools for Linear Systems: Constant Coefficients	299
9.3	Linear Multiple-Degree-of-Freedom Systems:	
	Constant Coefficients	309
9.4	Linear Multiple-Degree-of-Freedom Systems:	
	Periodic Coefficients (Floquet Theory)	
9.5	Nyquist Criterion for Multiple-Degree-of-Freedom Systems	325
Chapter		
	Instabilities of Rotors	
10.1	Unsymmetrical Rotor Instability	
10.2	Quasi-Steady Aerodynamics	
10.3	Rotor Weaving	352
10.4	Blade Pitch-Flap-Lag Instability	
10.5	Rotordynamic Instabilities	379
Chapter		
	Rotor-Pylon Systems	
11.1	Multiblade Coordinates and Rotor Modes	
11.2	Rotor-Nacelle Whirl Flutter	
11.3	Ground Resonance Instability	
11.4	Air Resonance	
11.5	Air Mass Dynamics	433
Chapter		
12.1	Introduction and Classification	447
12.2	Two-Dimensional Frequency-Domain Theories	
12.3	Two-Dimensional Arbitrary Motion Theories	469
12.4	Bending-Torsion Flutter	485
12.5	Three-Dimensional Aerodynamic Theories	
12.6	Dynamic Stall and Stall Flutter	208

CONTENTS

Chapter	13 Analysis of Nonlinear Systems	529
13.1	Introduction	529
13.2	Simple Linearization	
13.3	Transient Solutions Using Numerical Integration	
13.4	Quasi-Linearization for Explicit Nonlinearities	546
13.5	Numerical Methods for Stability Estimation	
13.6	Future Directions	
15.0	Tuture Directions	555
Chapter	14 Model Rotor Testing for Aeroelastic Stability	557
14.1	Introduction	557
14.1		557
	Scaling Laws	
14.3	Model Construction Considerations	562
14.4	Instrumentation and Test Procedures	564
14.5	Aeroelastic Considerations for Nonaeroelastic Testing	574
Chanton	15 Electory - mis Devices for Determined	570
Chapter		579
15.1	Introduction	579
15.2	Examples of Elastomeric Devices	579
15.3	Basic Characteristics of Elastomeric Materials	581
15.4	Elastomeric Lead-Lag Dampers	584
15.5	Other Applications of Elastomerics	589
C1 (F 01
Chapter		591
16.1	Introduction	591
16.2	Generalized Blade Elastic Properties	591
16.3	Beams with Thin-Shell Closed-Cell Construction	594
16.4	Multicell Beams	605
16.5	Total Section Properties	616
16.6	Hygrothermal Effects in Composites	620
16.7	Prismatic Bars	622
Chapter		625
17.1	Interactions of the Rotor Drive and Engine/Fuel Control Systems	625
17.2	Aeroelastic Optimization	642
~		· _ ·
Chapter	8 8	
18.1	Key Historical Milestones	
18.2	What's on the Horizon?	654
Annondi	x A Glossary of Rotorcraft-Related Terms	657
Appendi	A Glossary of Rotorcrait-Related Terms	057
Appendi	x B Charts for Blade Frequency Estimation	665
Appendi	x C Generalized Frequency-Domain	
	Substructure Synthesis	677

CONTENTS

Appendix D Basic Equations of Motion for Ground Resonance and Air Resonance	685
Appendix E Composite Materials—Basics	707
References	719
Index	729
Supporting Materials	751

P

÷.