ORGANIC MECHANISMS

Reactions, Methodology, and Biological Applications

XIAOPING SUN
University of Charleston
Charleston, West Virginia, USA

WILEY
CONTENTS

Preface xiii

1 Fundamental Principles 1

1.1 Reaction Mechanisms and their Importance 1

1.2 Elementary (Concerted) and Stepwise Reactions 2

1.3 Molecularity

1.3.1 Unimolecular Reactions 4

1.3.2 Bimolecular Reactions 4

1.4 Kinetics

1.4.1 Rate Laws for Elementary (Concerted) Reactions 5

1.4.2 Reactive Intermediates and the Steady-State Assumption 9

1.4.3 Rate Laws for Stepwise Reactions 12

1.5 Thermodynamics

1.5.1 Enthalpy, Entropy, and Free Energy 13

1.5.2 Reversible and Irreversible Reactions 14

1.5.3 Chemical Equilibrium 15

1.6 The Transition State 17

1.7 The Molecular Orbital Theory

1.7.1 Formation of Molecular Orbitals from Atomic Orbitals 19

1.7.2 Molecular Orbital Diagrams 25

1.7.3 Resonance Stabilization 25

1.7.4 Frontier Molecular Orbitals 28

1.8 Electrophiles/Nucleophiles versus Acids/Bases

1.8.1 Common Electrophiles 29

1.8.2 Common Nucleophiles 33
CONTENTS

1.9 Isotope Labeling
Problems
References

2 The Aliphatic C—H Bond Functionalization
2.1 Alkyl Radicals: Bonding and their Relative Stability
2.2 Radical Halogenations of the C—H Bonds on sp^3-Hybridized Carbons: Mechanism and Nature of the Transition States
2.3 Energetics of the Radical Halogenations of Alkanes and their Regioselectivity
 2.3.1 Energy Profiles for Radical Halogenation Reactions of Alkanes
 2.3.2 Regioselectivity for Radical Halogenation Reactions
2.4 Kinetics of Radical Halogenations of Alkanes
2.5 Radical Initiators
2.6 Transition-Metal-Compounds-Catalyzed Alkane C—H Bond Activation and Functionalization
 2.6.1 The C—H Bond Activation via Agostic Bond
 2.6.2 Mechanisms for the C—H Bond Oxidative Functionalization
2.7 Superacids-Catalyzed Alkane C—H Bond Activation and Functionalization
2.8 Nitration of Aliphatic C—H Bonds via the Nitronium NO_2^+ Ion
2.9 Enzyme-Catalyzed Alkane C—H Bond Activation and Functionalization: Biochemical Methods
Problems
References

3 Functionalization of the Alkene C=C Bond by Electrophilic Additions
3.1 Markovnikov Additions via Intermediate Carbocations
 3.1.1 Additions of Alkenes to Hydrogen Halides (HCl, HBr, and HI): Mechanism, Regiochemistry, and Stereochemistry
 3.1.2 Acid- and Transition-Metal-Catalyzed Hydration of Alkenes and Its Applications
 3.1.3 Acid-Catalyzed Additions of Alcohols to Alkenes
 3.1.4 Special Electrophilic Additions of the Alkene C=C Bond: Mechanistic and Synthetic Aspects
 3.1.5 Electrophilic Addition to the C≡C Triple Bond via a Vinyl Cation Intermediate
3.2 Electrophilic Addition of Hydrogen Halides to Conjugated Dienes
3.3 Non-Markovnikov Radical Addition

4 Functionalization of the Alkene Cycloaddition Reactions
4.1 Cycloadditions of the Alkene Three-Membered Rings
 4.1.1 Epoxidation
 4.1.2 Cycloadditions via Three-Membered Ring Intermediate
4.2 Cycloadditions to Form Six-Membered Rings
4.3 Diels—Alder Cycloadditions to Form Five-Membered Rings
 4.3.1 Frontier Molecular Orbital Theory
 4.3.2 Substituent Effects
 4.3.3 Other Diels—Alder Additions
4.4 1,3-Dipolar Cycloadditions
 4.4.1 Oxidation of Alkynes to Alkenes
 4.4.2 Cycloadditions of Alkenes to Alkenes
 4.4.3 Cycloadditions of Alkenes to Aromatic Heterocycles
4.5 Pericyclic Reactions
Problems
References

3.4 Hydroboration: Concerted Reactions
3.4.1 Diborane (B_2H_6)
3.4.2 Concerted, Non-hydroboration (BH_3) to the Alkene
3.4.3 Synthesis of Species
3.4.4 Reactions of Alkene Reagents: Regiochemistry, Applications in Cyclic

3.5 Transition-Metal-Catalyzed Conjugate Addition (syn-Addition)
3.5.1 Mechanism and Stereochemistry
3.5.2 Synthetic Applications
3.5.3 Biochemically-Related Reactions

3.6 Halogenation of the Alkene Mechanism and Its Stereochemistry
Problems
References
3.4 Hydroboration: Concerted, Non-Markovnikov syn-Addition 97
3.4.1 Diborane (B₂H₆): Structure and Properties 97
3.4.2 Concerted, Non-Markovnikov syn-Addition of Borane (BH₃) to the Alkene C=C Bond: Mechanism, Regiochemistry, and Stereochemistry 98
3.4.3 Synthesis of Special Hydroborating Reagents 102
3.4.4 Reactions of Alkenes with Special Hydroborating Reagents: Regiochemistry, Stereochemistry, and their Applications in Chemical Synthesis 103
3.5 Transition-Metal-Catalyzed Hydrogenation of the Alkene C=C Bond (syn-Addition) 107
3.5.1 Mechanism and Stereochemistry 107
3.5.2 Synthetic Applications 110
3.5.3 Biochemically-Related Applications: Hydrogenated Fats (Oils) 111
3.6 Halogenation of the Alkene C=C Bond (Anti-Addition): Mechanism and Its Stereochemistry 113
Problems 117
References 120

4 Functionalization of the Alkene C=C Bond by Cycloaddition Reactions 121
4.1 Cycloadditions of the Alkene C=C Bond to Form Three-Membered Rings 122
4.1.1 Epoxidation 122
4.1.2 Cycloadditions via Carbenes and Related Species 124
4.2 Cycloadditions to Form Four-Membered Rings 128
4.3 Diels-Alder Cycloadditions of the Alkene C=C Bond to Form Six-Membered Rings 131
4.3.1 Frontier Molecular Orbital Interactions 132
4.3.2 Substituent Effects 135
4.3.3 Other Diels-Alder Reactions 138
4.4 1,3-Dipolar Cycloadditions of the C=C and other Multiple Bonds to Form Five-Membered Rings 142
4.4.1 Oxidation of Alkenes by Ozone (O₃) and Osmium Tetraoxide (OsO₄) via Cycloadditions 142
4.4.2 Cycloadditions of Nitrogen-Containing 1,3-Dipoles to Alkenes 145
4.4.3 Cycloadditions of Alkenes, Alkynes, and Nitriles to the Dithionitronium (NS²⁺) Ion: Making CNS-Containing Aromatic Heterocycles 147
4.5 Pericyclic Reactions 154
Problems 158
References 161
5 The Aromatic C—H Bond Functionalization and Related Reactions

5.1 Aromatic Nitration: All Reaction Intermediates and Full Mechanism for the Aromatic C—H Bond Substitution by Nitronium (NO$_2^+$) and Related Electrophiles

- **5.1.1 Charge-Transfer Complex [ArH, NO$_2^-$] between Arene and Nitronium**
- **5.1.2 Ion-Radical Pair [ArH$^+$, NO$_2^-$]**
- **5.1.3 Arenium [Ar(H)NO$_2^+$] Ion**
- **5.1.4 Full Mechanism for Aromatic Nitration**

5.2 Mechanisms and Synthetic Utility for Aromatic C—H Bond Substitutions by Other Related Electrophiles

5.3 The Electrophilic Aromatic C—H Bond Substitution Reactions via S$_n$I and S$_n$2 Mechanisms

5.3.1 Reactions Involving S$_n$I Steps

5.3.2 Reactions Involving S$_n$2 Steps

5.4 Substituent Effects on the Electrophilic Aromatic Substitution Reactions via S$_n$1 and S$_n$2 Mechanisms

5.4.1 Ortho- and Para-Directors

5.4.2 Meta-Directors

5.5 Isomerizations Effected by the Electrophilic Aromatic Substitution Reactions

5.6 Electrophilic Substitution Reactions on the Aromatic Carbon–Metal Bonds: Mechanisms and Synthetic Applications

5.7 Nucleophilic Aromatic Substitution via a Benzyne (aryne) Intermediate: Functional Group Transformations on Aromatic Rings

5.8 Nucleophilic Aromatic Substitution via an Anionic Meisenheimer Complex

5.9 Biological Applications of Functionalized Aromatic Compounds

6 Nucleophilic Substitutions on sp3-Hybridized Carbons: Functional Group Transformations

6.1 Nucleophilic Substitution on Mono-Functionalized sp3-Hybridized Carbon

6.2 Functional Groups which are Good and Poor Leaving Groups

6.3 Good and Poor Nucleophiles

6.4 S$_n$2 Reactions: Kinetics, Mechanism, and Stereochemistry

6.4.1 Mechanism and Stereochemistry for S$_n$2 Reactions

6.4.2 Steric Effect on S$_n$2 Reactions

6.4.3 Effect of Nucleophiles

6.4.4 Solvent Effect

7 Eliminations

7.1 E2 Elimination: Bimolecular Regiochemistry and Stereochemistry

7.1.1 Mechanism and Stereochemistry

7.1.2 E2 Eliminations

7.1.3 Stereochemistry

7.2 Analysis of the E2 Mechanism

7.3 Basicity versus Nucleophilicity

7.4 Competition of E2 and S$_n$I Reactions

7.5 E1 Elimination: Stepwise Intermediate Carbocation

7.5.1 Mechanism and
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.5</td>
<td>Effect of Unsaturated Groups Attached to the Functionalized Electrophilic Carbon</td>
</tr>
<tr>
<td>6.5</td>
<td>Analysis of the S_N2 Mechanism Using Symmetry Rules and Molecular Orbital Theory</td>
</tr>
<tr>
<td>6.5.1</td>
<td>The S_N2 Reactions of Methyl and Primary Haloalkanes $\text{RCH}_2\text{X} \ (\text{X} = \text{Cl}, \text{Br}, \text{or I}; \text{R} = \text{H} \text{or an Alkyl Group})$</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Reactivity of Dichloromethane CH_2Cl_2</td>
</tr>
<tr>
<td>6.6</td>
<td>S_N1 Reactions: Kinetics, Mechanism, and Product Development</td>
</tr>
<tr>
<td>6.6.1</td>
<td>The S_N1 Mechanism and Rate Law</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Solvent Effect</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Effects of Carbocation Stability and Quality of Leaving Group on the S_N1 Rates</td>
</tr>
<tr>
<td>6.6.4</td>
<td>Product Development for S_N1 Reactions</td>
</tr>
<tr>
<td>6.7</td>
<td>Competition between S_N1 and S_N2 Reactions</td>
</tr>
<tr>
<td>6.8</td>
<td>Some Useful S_N1 and S_N2 Reactions: Mechanisms and Synthetic Perspectives</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Nucleophilic Substitution Reactions Effected by Carbon Nucleophiles</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Synthesis of Primary Amines</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Synthetic Utility of Triphenylphosphine: A Strong Phosphorus Nucleophile</td>
</tr>
<tr>
<td>6.8.4</td>
<td>Neighboring Group-Assisted S_N1 Reactions</td>
</tr>
<tr>
<td>6.9</td>
<td>Biological Applications of Nucleophilic Substitution Reactions</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Biomedical Applications</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Biosynthesis Involving Nucleophilic Substitution Reactions</td>
</tr>
<tr>
<td>6.9.3</td>
<td>An Enzyme-Catalyzed Nucleophilic Substitution of a Haloalkane</td>
</tr>
<tr>
<td>6.9.4</td>
<td>Problems</td>
</tr>
<tr>
<td>6.9.5</td>
<td>References</td>
</tr>
<tr>
<td>7</td>
<td>Eliminations</td>
</tr>
<tr>
<td>7.1</td>
<td>$E2$ Elimination: Bimolecular β-Elimination of H/LG and Its Regiochemistry and Stereochemistry</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Mechanism and Regiochemistry</td>
</tr>
<tr>
<td>7.1.2</td>
<td>$E2$ Eliminations of Functionalized Cycloalkanes</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Stereochemistry</td>
</tr>
<tr>
<td>7.2</td>
<td>Analysis of the $E2$ Mechanism Using Symmetry Rules and Molecular Orbital Theory</td>
</tr>
<tr>
<td>7.3</td>
<td>Basicity versus Nucleophilicity for Various Anions</td>
</tr>
<tr>
<td>7.4</td>
<td>Competition of $E2$ and S_N2 Reactions</td>
</tr>
<tr>
<td>7.5</td>
<td>$E1$ Elimination: Stepwise β-Elimination of H/LG via an Intermediate Carbocation and Its Rate Law</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Mechanism and Rate Law</td>
</tr>
</tbody>
</table>
CONTENTS

7.5.2 E1 Dehydration of Alcohols 278
7.5.3 E1 Elimination of Functionalized Alkanes 281
7.6 Special β-Elimination Reactions 283
7.7 Elimination of LG¹/LG² in the Compounds that Contain Two Functional Groups 286
7.8 α-Elimination Giving a Carbene: A Mechanistic Analysis Using Symmetry Rules and Molecular Orbital Theory 288
7.9 E1cb Elimination and its Biological Applications 288
 7.9.1 The E1cb Mechanism 288
 7.9.2 Biological Applications 291
Problems 294
References 297

8 Nucleophilic Additions and Substitutions on Carbonyl Groups 298

8.1 Nucleophilic Additions and Substitutions of Carbonyl Compounds 298
8.2 Nucleophilic Additions of Aldehydes and Ketones and their Biological Applications 301
 8.2.1 Acid- and Base-Catalyzed Hydration of Aldehydes and Ketones 301
 8.2.2 Acid-Catalyzed Nucleophilic Additions of Aldehydes and Ketones to Alcohols 303
 8.2.3 Biological Applications: Cyclic Structures of Carbohydrates 307
 8.2.4 Addition of Sulfur Nucleophile to Aldehydes 311
 8.2.5 Nucleophilic Addition of Amines to Ketones and Aldehydes 311
 8.2.6 Nucleophilic Additions of Aldehydes and Ketones to Hydride Donors: Organic Reductions 315
8.3 Biological Hydride Donors NAD(P)H and FADH₂ 316
8.4 Activation of Carboxylic Acids via Nucleophilic Substitutions on the Carbonyl Carbons 320
 8.4.1 Reactions of Carboxylic Acids with Thionyl Chloride 320
 8.4.2 Esterification Reactions and Synthetic Applications 321
 8.4.3 Formation of Anhydrides 325
 8.4.4 Nucleophilic Addition to Alkylithium 326
8.5 Nucleophilic Substitutions of Acyl Derivatives and their Biological Applications 327
 8.5.1 Nucleophilic Substitutions of Acyl Chlorides and Anhydrides 327
 8.5.2 Hydrolysis and Other Nucleophilic Substitutions of Esters 329
 8.5.3 Biodiesel Synthesis and Reaction Mechanism 331
 8.5.4 Biological Applications 332

8.6 Reduction of Acyl Derivatives 333
8.7 Kinetics of the Nucleophilic Substitutions of Acyl Derivatives 334
 Problems 336
 References 337

9 Reactivity of the α-Hydrogen 338

9.1 Formation of Enolates and Enamines 339
 9.1.1 Formation of Enolates 339
 9.1.2 Molecular Orbital Theory 340
9.2 Alkylation of Carbonyl Compounds (Esters) via Enolates and Enamines 341
 9.2.1 Alkylation via Enolates 342
 9.2.2 Alkylation via Enamines 344
9.3 Aldol Reactions 345
 9.3.1 Mechanism and Stereochemistry 345
 9.3.2 Stereoselectivity 346
 9.3.3 Other Synthetic Applications 348
9.4 Acylation Reactions of Enolates 350
 9.4.1 Synthetic Utility 350
9.5 Roles of Enolates in Metabolism 355
 Problems 356
 References 358

10 Rearrangements 359

10.1 Major Types of Rearrangements 362
10.2 Rearrangement of Carbonyl Compounds 363
 10.2.1 1,2-Shifts in Cycloalkane Molecules 363
 10.2.2 1,2-Shifts in Cyclic Carbonyl Molecules—Rearrangement of Enolates 368
 10.2.3 Resonance Stabilized Rearrangements 371
10.2.4 In vivo Cascade Rearrangements 378
10.2.5 Acid-Catalyzed Rearrangements 385
10.2.6 Anion-Initiated Rearrangements 394
10.3 Neighboring Leaving Group Rearrangements 400
 10.3.1 Beckmann Rearrangement 400
 10.3.2 Hofmann Rearrangement 403
 10.3.3 Baeyer-Villiger Rearrangement 404
 10.3.4 Acid-Catalyzed Rearrangements 406
10.4 Carbene Rearrangements Facilitated by a Lone Pair 408
Problems 417
References 419
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>Reduction of Acyl Derivatives by Hydride Donors</td>
<td>335</td>
</tr>
<tr>
<td>8.7</td>
<td>Kinetics of the Nucleophilic Addition and Substitution of Acyl Derivatives Problems</td>
<td>337</td>
</tr>
<tr>
<td>9</td>
<td>Reactivity of the α-Hydrogen to Carbonyl Groups</td>
<td>344</td>
</tr>
<tr>
<td>9.1</td>
<td>Formation of Enolates and their Nucleophilicity</td>
<td>344</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Formation of Enolates</td>
<td>344</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Molecular Orbitals and Nucleophilicity of Enolates</td>
<td>348</td>
</tr>
<tr>
<td>9.2</td>
<td>Alkylation of Carbonyl Compounds (Aldehydes, Ketones, and Esters) via Enolates and Hydrazones</td>
<td>349</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Alkylation via Enolates</td>
<td>349</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Alkylation via Hydrazones and Enamines</td>
<td>351</td>
</tr>
<tr>
<td>9.3</td>
<td>Aldol Reactions</td>
<td>354</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Mechanism and Synthetic Utility</td>
<td>354</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Stereoselectivity</td>
<td>361</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Other Synthetic Applications</td>
<td>364</td>
</tr>
<tr>
<td>9.4</td>
<td>Acylation Reactions of Esters via Enolates: Mechanism and Synthetic Utility</td>
<td>367</td>
</tr>
<tr>
<td>9.5</td>
<td>Roles of Enolates in Metabolic Processes in Living Organisms Problems</td>
<td>373</td>
</tr>
<tr>
<td>10</td>
<td>Rearrangements</td>
<td>380</td>
</tr>
<tr>
<td>10.1</td>
<td>Major Types of Rearrangements</td>
<td>380</td>
</tr>
<tr>
<td>10.2</td>
<td>Rearrangement of Carbocations: 1,2-Shift</td>
<td>381</td>
</tr>
<tr>
<td>10.2.1</td>
<td>1,2-Shifts in Carbocations Produced from Acyclic Molecules</td>
<td>382</td>
</tr>
<tr>
<td>10.2.2</td>
<td>1,2-Shifts in Carbocations Produced from Cyclic Molecules—Ring Expansion</td>
<td>383</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Resonance Stabilization of Carbocation—Pinacol Rearrangement</td>
<td>385</td>
</tr>
<tr>
<td>10.2.4</td>
<td>In vivo Cascade Carbocation Rearrangements: Biological Significance</td>
<td>387</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Acid-Catalyzed 1,2-Shift in Epoxides</td>
<td>388</td>
</tr>
<tr>
<td>10.2.6</td>
<td>Anion-Initiated 1,2-Shift</td>
<td>389</td>
</tr>
<tr>
<td>10.3</td>
<td>Neighboring Leaving Group-Facilitated 1,2-Rearrangement</td>
<td>390</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Beckmann Rearrangement</td>
<td>391</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Hofmann Rearrangement</td>
<td>393</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Baeyer-Villiger Oxidation (Rearrangement)</td>
<td>394</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Acid-Catalyzed Rearrangement of Organic Peroxides</td>
<td>396</td>
</tr>
<tr>
<td>10.4</td>
<td>Carbene Rearrangement: 1,2-Rearrangement of Hydrogen Facilitated by a Lone Pair of Electrons</td>
<td>399</td>
</tr>
</tbody>
</table>
In Summer 2010, I was contacted by Hoboken, New Jersey, for book review purposes. We both agreed that the needs of various upper-level college courses were in need of a textbook. This led to the creation of the book. The book was approved by Wiley in December 2010 and took up the challenge and came out in December 2011.

Since 1998, I have been on the faculty of the Virginia University Institute of Technology (2001–present). My current and past teaching include courses on reaction mechanisms. When I teach these courses, the lectures are also student-centered. My teaching and research have been influenced by my experiences with other colleagues and the chemical community by publishing papers in this field.

The book consists of 10 chapters, each dealing with various organic reactions. Thoroughly presented in the book in a very good readable manner. Special attention is given to functionalization processes, such as addition and functionalization, charge transfer, and chemistry of aromatic compounds.