Acknowledgments xvii
Preface xix
About the Authors xxv

Chapter 1 Introduction to Interconnection Networks 1
1.1 Three Questions About Interconnection Networks 2
1.2 Uses of Interconnection Networks 4
 1.2.1 Processor-Memory Interconnect 5
 1.2.2 I/O Interconnect 8
 1.2.3 Packet Switching Fabric 11
1.3 Network Basics 13
 1.3.1 Topology 13
 1.3.2 Routing 16
 1.3.3 Flow Control 17
1.4 History 21
1.5 Organization of this Book 23

Chapter 2 A Simple Interconnection Network 25
2.1 Network Specifications and Constraints 25
2.2 Topology 27
2.3 Routing 31
2.4 Flow Control 32
2.5 Router Design 33
2.6 Performance Analysis 36
2.7 Exercises 42
Chapter 3 Topology Basics

3.1 Nomenclature
- 3.1.1 Channels and Nodes 46
- 3.1.2 Direct and Indirect Networks 47
- 3.1.3 Cuts and Bisections 48
- 3.1.4 Paths 48
- 3.1.5 Symmetry 49

3.2 Traffic Patterns

3.3 Performance
- 3.3.1 Throughput and Maximum Channel Load 51
- 3.3.2 Latency 55
- 3.3.3 Path Diversity 57

3.4 Packaging Cost

3.5 Case Study: The SGI Origin 2000

3.6 Bibliographic Notes

3.7 Exercises

Chapter 4 Butterfly Networks

4.1 The Structure of Butterfly Networks

4.2 Isomorphic Butterflies

4.3 Performance and Packaging Cost

4.4 Path Diversity and Extra Stages

4.5 Case Study: The BBN Butterfly

4.6 Bibliographic Notes

4.7 Exercises

Chapter 5 Torus Networks

5.1 The Structure of Torus Networks

5.2 Performance
- 5.2.1 Throughput 92
- 5.2.2 Latency 95
- 5.2.3 Path Diversity 96

5.3 Building Mesh and Torus Networks

5.4 Express Cubes

5.5 Case Study: The MIT J-Machine

5.6 Bibliographic Notes

5.7 Exercises
Chapter 6 Non-Blocking Networks 111

6.1 Non-Blocking vs. Non-Interfering Networks 112
6.2 Crossbar Networks 112
6.3 Clos Networks 116
 6.3.1 Structure and Properties of Clos Networks 116
 6.3.2 Unicast Routing on Strictly Non-Blocking Clos Networks 118
 6.3.3 Unicast Routing on Rearrangeable Clos Networks 122
 6.3.4 Routing Clos Networks Using Matrix Decomposition 126
 6.3.5 Multicast Routing on Clos Networks 128
 6.3.6 Clos Networks with More Than Three Stages 133
6.4 Beneš Networks 134
6.5 Sorting Networks 135
6.6 Case Study: The Velio VC2002 (Zeus) Grooming Switch 137
6.7 Bibliographic Notes 142
6.8 Exercises 142

Chapter 7 Slicing and Dicing 145

7.1 Concentrators and Distributors 146
 7.1.1 Concentrators 146
 7.1.2 Distributors 148
7.2 Slicing and Dicing 149
 7.2.1 Bit Slicing 149
 7.2.2 Dimension Slicing 151
 7.2.3 Channel Slicing 152
7.3 Slicing Multistage Networks 153
7.4 Case Study: Bit Slicing in the Tiny Tera 155
7.5 Bibliographic Notes 157
7.6 Exercises 157

Chapter 8 Routing Basics 159

8.1 A Routing Example 160
8.2 Taxonomy of Routing Algorithms 162
8.3 The Routing Relation 163
8.4 Deterministic Routing 164
 8.4.1 Destination-Tag Routing in Butterfly Networks 165
 8.4.2 Dimension-Order Routing in Cube Networks 166
Contents

8.5 Case Study: Dimension-Order Routing in the Cray T3D 168
8.6 Bibliographic Notes 170
8.7 Exercises 171

Chapter 9 Oblivious Routing 173

9.1 Valiant's Randomized Routing Algorithm 174
 9.1.1 Valiant's Algorithm on Torus Topologies 174
 9.1.2 Valiant's Algorithm on Indirect Networks 175

9.2 Minimal Oblivious Routing 176
 9.2.1 Minimal Oblivious Routing on a Folded Clos (Fat Tree) 176
 9.2.2 Minimal Oblivious Routing on a Torus 178

9.3 Load-Balanced Oblivious Routing 180
9.4 Analysis of Oblivious Routing 180
9.5 Case Study: Oblivious Routing in the Avici Terabit Switch Router (TSR) 183
9.6 Bibliographic Notes 186
9.7 Exercises 187

Chapter 10 Adaptive Routing 189

10.1 Adaptive Routing Basics 189
10.2 Minimal Adaptive Routing 192
10.3 Fully Adaptive Routing 193
10.4 Load-Balanced Adaptive Routing 195
10.5 Search-Based Routing 196
10.6 Case Study: Adaptive Routing in the Thinking Machines CM-5 196
10.7 Bibliographic Notes 201
10.8 Exercises 201

Chapter 11 Routing Mechanics 203

11.1 Table-Based Routing 203
 11.1.1 Source Routing 204
 11.1.2 Node-Table Routing 208

11.2 Algorithmic Routing 211
11.3 Case Study: Oblivious Source Routing in the IBM Vulcan Network 212
14.3 Adaptive Routing 272
 14.3.1 Routing Subfunctions and Extended Dependences 272
 14.3.2 Duato's Protocol for Deadlock-Free Adaptive Algorithms 276

14.4 Deadlock Recovery 277
 14.4.1 Regressive Recovery 278
 14.4.2 Progressive Recovery 278

14.5 Livelock 279

14.6 Case Study: Deadlock Avoidance in the Cray T3E 279

14.7 Bibliographic Notes 281

14.8 Exercises 282

Chapter 15 Quality of Service 285

15.1 Service Classes and Service Contracts 285

15.2 Burstiness and Network Delays 287
 15.2.1 \((a, p)\) Regulated Flows 287
 15.2.2 Calculating Delays 288

15.3 Implementation of Guaranteed Services 290
 15.3.1 Aggregate Resource Allocation 291
 15.3.2 Resource Reservation 292

15.4 Implementation of Best-Effort Services 294
 15.4.1 Latency Fairness 294
 15.4.2 Throughput Fairness 296

15.5 Separation of Resources 297
 15.5.1 Tree Saturation 297
 15.5.2 Non-interfering Networks 299

15.6 Case Study: ATM Service Classes 299

15.7 Case Study: Virtual Networks in the Avici TSR 300

15.8 Bibliographic Notes 302

15.9 Exercises 303

Chapter 16 Router Architecture 305

16.1 Basic Router Architecture 305
 16.1.1 Block Diagram 305
 16.1.2 The Router Pipeline 308

16.2 Stalls 310

16.3 Closing the Loop with Credits 312

16.4 Reallocating a Channel 313

16.5 Speculation and Lookahead 316
16.6 Flit and Credit Encoding 319
16.7 Case Study: The Alpha 21364 Router 321
16.8 Bibliographic Notes 324
16.9 Exercises 324

Chapter 17 Router Datapath Components 325
17.1 Input Buffer Organization 325
 17.1.1 Buffer Partitioning 326
 17.1.2 Input Buffer Data Structures 328
 17.1.3 Input Buffer Allocation 333
17.2 Switches 334
 17.2.1 Bus Switches 335
 17.2.2 Crossbar Switches 338
 17.2.3 Network Switches 342
17.3 Output Organization 343
17.4 Case Study: The Datapath of the IBM Colony Router 344
17.5 Bibliographic Notes 347
17.6 Exercises 348

Chapter 18 Arbitration 349
18.1 Arbitration Timing 349
18.2 Fairness 351
18.3 Fixed Priority Arbiter 352
18.4 Variable Priority Iterative Arbiters 354
 18.4.1 Oblivious Arbiters 354
 18.4.2 Round-Robin Arbiter 355
 18.4.3 Grant-Hold Circuit 355
 18.4.4 Weighted Round-Robin Arbiter 357
18.5 Matrix Arbiter 358
18.6 Queuing Arbiter 360
18.7 Exercises 362

Chapter 19 Allocation 363
19.1 Representations 363
19.2 Exact Algorithms 366
19.3 Separable Allocators 367
 19.3.1 Parallel Iterative Matching 371
 19.3.2 iSLIP 371
 19.3.3 Lonely Output Allocator 372
19.4 Wavefront Allocator 373
19.5 Incremental vs. Batch Allocation 376
19.6 Multistage Allocation 378
19.7 Performance of Allocators 380
19.8 Case Study: The Tiny Tera Allocator 383
19.9 Bibliographic Notes 385
19.10 Exercises 386

Chapter 20 Network Interfaces 389
20.1 Processor-Network Interface 390
 20.1.1 Two-Register Interface 391
 20.1.2 Register-Mapped Interface 392
 20.1.3 Descriptor-Based Interface 393
 20.1.4 Message Reception 393
20.2 Shared-Memory Interface 394
 20.2.1 Processor-Network Interface 395
 20.2.2 Cache Coherence 397
 20.2.3 Memory-Network Interface 398
20.3 Line-Fabric Interface 400
20.4 Case Study: The MIT M-Machine Network Interface 403
20.5 Bibliographic Notes 407
20.6 Exercises 408

Chapter 21 Error Control 411
21.1 Know Thy Enemy: Failure Modes and Fault Models 411
21.2 The Error Control Process: Detection, Containment, and Recovery 414
21.3 Link Level Error Control 415
 21.3.1 Link Monitoring 415
 21.3.2 Link-Level Retransmission 416
 21.3.3 Channel Reconfiguration, Degradation, and Shutdown 419
21.4 Router Error Control 421
21.5 Network-Level Error Control 422
21.6 End-to-end Error Control 423
21.7 Bibliographic Notes 423
21.8 Exercises 424
Chapter 25 Simulation Examples

25.1 Routing
- 25.1.1 Latency 496
- 25.1.2 Throughput Distributions 499

25.2 Flow Control Performance
- 25.2.1 Virtual Channels 500
- 25.2.2 Network Size 502
- 25.2.3 Injection Processes 503
- 25.2.4 Prioritization 505
- 25.2.5 Stability 507

25.3 Fault Tolerance 508

Appendix A Nomenclature 511
Appendix B Glossary 515
Appendix C Network Simulator 521
Bibliography 523
Index 539