

Dipl.-Ing. Bernd Meyer, Hameln

Entwicklung eines Simulators für Zweikreisstrahltriebwerke für Modelluntersuchungen des Standprobelaufs

Reihe **12**: Verkehrstechnik/ Fahrzeugtechnik

Nr. 277

Inhaltsverzeichnis

Formelzeichen				
Kurzfassung				
1	Ein	führung	1	
2	Flu	gtriebwerk–Simulatortechnik	3	
	2.1	Stellenwert der Simulatoren in der Triebwerksentwicklung	3	
	2.2	Stand der Flugtriebwerk – Simulatortechnik	4	
		2.2.1 Durchfluß-Simulator (Flow Nacelle)	5	
		2.2.2 Ausblas-Simulator (Blown Nacelle)	6	
		2.2.3 Simulator mit Ejektorprinzip (Ejector Nacelle)	8	
		2.2.4 TPS Simulator (Turbine Powered Simulator)	9	
3	Kor	nstruktion eines neuen Triebwerksimulators	11	
	3.1	Notwendigkeit der Neukonstruktion	11	
	3.2	Spezielle Anforderungen an den neuen Simulator	12	
	3.3	Aerodynamische Ähnlichkeitskennzahlen	14	
	3.4	Auslegung des neuen Simulatortyps	16	
	3.5	Simulator des GE-90 Triebwerks	18	
	3.6	Simulator des CF6-80 Triebwerks	24	
	3.7	Konstruktionsbeschreibung des Simulators	24	
	3.8	Umlenkeitter zur Verbesserung der Einlaufströmung	29	

4	Bet	riebsverhalten der Simulatoren	36
	4.1	Luftversorgungsanlage des Instituts	36
	4.2	Meßtechnik	39
	4.3	Versuchsstand zur Abtastung der Strömungsfelder	44
	4.4	Versuchsdurchführung und Ergebnisse	46
		4.4.1 Simulatoreinlaufströmung	46
		4.4.2 Freistrahlausbreitung	49
•			
5	Aus	elegung eines neuen Windkanals	53
	5.1	Allgemeine Übersicht	53
	5.2	Anforderungen an den Versuchsstand	53
	5.3	Konstruktionsbeschreibung	55
	5.4	Meß- und Auswerteverfahren	59
		5.4.1 Meßverfahren	59
	/	5.4.2 Versuchsdurchführung	60
		5.4.3 Auswerteverfahren	61
	5.5	Versuchsergebnisse	63
		5.5.1 Windkanal mit $n=720 \ min^{-1}$ (ohne Einbauten)	63
		5.5.2 Windkanal mit $n=720 \ min^{-1}$ (mit Einbauten)	65
		5.5.3 Windkanal mit $n = 950 \text{ min}^{-1}$ (mit Einhauten)	66

6	Unt	erschall–Einlaufströmung	68	
	6.1	Der Unterschalleinlauf	68	
	6.2	Störfaktoren im Standbetrieb	70	
	6.3	Strömungsverhältnisse an der Einlaufkontur	72	
	6.4	Einlaufuntersuchungen am Simulator	76	
	6.5	Meßtechnik zur Erfassung der Lippenumströmung	78	
	6.6	Versuchsdurchführung und Ergebnisse	81	
	7	•		
7	7 Numerische Simulation des Simulatorbetriebs			
	7.1	Netzgenerierung und Randbedingungen	109	
	7.2	Ergebnisse der Simulationsberechnungen	110	
8	Zusammenfassung		121	
9	Anł	nang	125	
		J		
10 Literaturverzeichnis				