Polynomials with Special Regard to Reducibility

A. SCHINZEL

Contents

Prefa	pece pe	age ix
Ackno	owledgments	х
Intro	duction	1
Notai	tion	8
1	Arbitrary polynomials over an arbitrary field	12
1.1	Lüroth's theorem	12
1.2	Theorems of Gordan and E. Noether	15
1.3	Ritt's first theorem	18
1.4	Ritt's second theorem	24
1.5	Connection between reducibility and decomposability. The case of two variables	52
1.6	Kronecker's theorems on factorization of polynomials	58
1.7	Connection between reducibility and decomposability. The case	
	of more than two variables	63
1.8	Some auxiliary results	71
1.9	A connection between irreducibility of a polynomial and of its	
	substitution value after a specialization of some of the variables	75
1.10	A polytope and a matrix associated with a polynomial	88
2	Lacunary polynomials over an arbitrary field	92
2.1	Theorems of Capelli and Kneser	92
2.2	Applications to polynomials in many variables	103
2.3	An extension of a theorem of Gourin	110
2.4	Reducibility of polynomials in many variables, that are	
	trinomials with respect to one of them	122
2.5	Reducibility of quadrinomials in many variables	167
2.6	The number of terms of a power of a polynomial	186

vi Contents

3	Polynomials over an algebraically closed field	201	
3.1	A theorem of E. Noether	201	
3.2	Theorems of Ruppert	204	
3.3	Salomon's and Bertini's theorems on reducibility	215	
3.4	The Mahler measure of polynomials over $\mathbb C$	222	
4	Polynomials over a finitely generated field	263	
4.1	A refinement of Gourin's theorem	263	
4.2	A lower bound for the Mahler measure of a polynomial over $\mathbb Z$	271	
4.3	The greatest common divisor of $KP(x^{n_1}, \ldots, x^{n_k})$ and		
	$KQ(x^{n_1},\ldots,x^{n_k})$	277	
4.4	Hilbert's irreducibility theorem	298	
5	Polynomials over a number field	315	
5.1	Introduction	315	
5.2	The classes $C_i(K, r, 1)$	319	
5.3	Families of diagonal ternary quadratic forms each isotropic		
	over K	325	
5.4	The class $C_1(K, r, 2)$	331	
5.5	The class $C_i(K, r, 2)$ for $i \neq 1$	339	
5.6	The class $C_0(K, r, s)$ for arbitrary s	355	
5.7	The class $C_1(K, r, s)$ for arbitrary s	369	
5.8	The class $C_2(K, r, s)$ for arbitrary s	375	
5.9	A digression on kernels of lacunary polynomials	382	
6	Polynomials over a Kroneckerian field	390	
6.1	The Mahler measure of non-self-inversive polynomials	390	
6.2	Non-self-inversive factors of a lacunary polynomial	420	
6.3	Self-inversive factors of lacunary polynomials	435	
6.4	The generalized Brauers-Hopf problem	473	
Appendices			
	Appendix A. Algebraic functions of one variable	481	
	Appendix B. Elimination theory	492	
	Appendix C. Permutation groups and abstract groups	495	
	Appendix D. Diophantine equations	498	
	Appendix E. Matrices and lattices	499	
	Appendix F. Finite fields and congruences	503	
	Appendix G. Analysis	505	
	Appendix I. Inequalities	508	
	Appendix J. Distribution of primes	510	
	Appendix K. Convexity	512	
	Appendix by Umberto Zannier. Proof of Conjecture 1	517	

Contents	vii
Bibliography	540
Indices	555
Index of definitions and conjectures	555
Index of theorems	556
Index of terms	557