Contents

1. Parameter optimization problems
 1.1 Problems without constraints 1
 1.2 Problems with equality constraints; necessary conditions for a stationary point 2
 1.3 Problems with equality constraints; sufficient conditions for a local minimum 9
 1.4 Neighboring optimum solutions and the interpretation of the Lagrange multipliers 18
 1.5 Numerical solution by a first-order gradient method 19
 1.6 Numerical solution by a second-order gradient method 21
 1.7 Problems with inequality constraints 24
 1.8 Linear programming problems 29
 1.9 Numerical solution of problems with inequality constraints 36
 1.10 The penalty function method 39

2. Optimization problems for dynamic systems
 2.1 Single-stage systems 42
 2.2 Multistage systems; no terminal constraints, fixed number of stages 43
 2.3 Continuous systems; no terminal constraints, fixed terminal time 47
 2.4 Continuous systems; some state variables specified at a fixed terminal time 55
 2.5 Continuous systems with functions of the state variables prescribed at a fixed terminal time 65
 2.6 Multistage systems; functions of the state variables specified at the terminal stage 69
2.7 Continuous systems; some state variables specified at an unspecified terminal time (including minimum-time problems) 71
2.8 Continuous systems; functions of the state variables specified at an unspecified terminal time, including minimum-time problems 87

3. Optimization problems for dynamic systems with path constraints

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Integral constraints</td>
<td>90</td>
</tr>
<tr>
<td>3.2</td>
<td>Control variable equality constraints</td>
<td>95</td>
</tr>
<tr>
<td>3.3</td>
<td>Equality constraints on functions of the control and state variables</td>
<td>99</td>
</tr>
<tr>
<td>3.4</td>
<td>Equality constraints on functions of the state variables</td>
<td>100</td>
</tr>
<tr>
<td>3.5</td>
<td>Interior-point constraints</td>
<td>101</td>
</tr>
<tr>
<td>3.6</td>
<td>Discontinuities in the system equations at interior points</td>
<td>104</td>
</tr>
<tr>
<td>3.7</td>
<td>Discontinuities in the state variables at interior points</td>
<td>106</td>
</tr>
<tr>
<td>3.8</td>
<td>Inequality constraints on the control variables</td>
<td>108</td>
</tr>
<tr>
<td>3.9</td>
<td>Linear optimization problems; “bang-bang” control</td>
<td>110</td>
</tr>
<tr>
<td>3.10</td>
<td>Inequality constraints on functions of the control and state variables</td>
<td>117</td>
</tr>
<tr>
<td>3.11</td>
<td>Inequality constraints on functions of the state variables</td>
<td>117</td>
</tr>
<tr>
<td>3.12</td>
<td>The separate computation of arcs in problems with state variable inequality constraints</td>
<td>124</td>
</tr>
<tr>
<td>3.13</td>
<td>Corner conditions</td>
<td>125</td>
</tr>
</tbody>
</table>

4. Optimal feedback control

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The extremal field approach</td>
<td>128</td>
</tr>
<tr>
<td>4.2</td>
<td>Dynamic programming; the partial differential equation for the optimal return function</td>
<td>131</td>
</tr>
<tr>
<td>4.3</td>
<td>Reducing the dimension of the state space by use of dimensionless variables</td>
<td>141</td>
</tr>
</tbody>
</table>

5. Linear systems with quadratic criteria: linear feedback

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Terminal controllers and regulators; introduction</td>
<td>148</td>
</tr>
<tr>
<td>5.2</td>
<td>Terminal controllers; quadratic penalty function on terminal error</td>
<td>148</td>
</tr>
<tr>
<td>5.3</td>
<td>Terminal controllers; zero terminal error and controllability</td>
<td>158</td>
</tr>
<tr>
<td>5.4</td>
<td>Regulators and stability</td>
<td>167</td>
</tr>
</tbody>
</table>
6. **Neighboring extremals and the second variation**

6.1 Neighboring extremal paths (final time specified) 177
6.2 Determination of neighboring extremal paths by the backward sweep method 179
6.3 Sufficient conditions for a local minimum 181
6.4 Perturbation feedback control (final time specified) 193
6.5 Neighboring extremal paths with final time unspecified 197
6.6 Determination of neighboring extremal paths by the backward sweep method with final time unspecified 199
6.7 Sufficient conditions for a local minimum with final time unspecified 201
6.8 Perturbation feedback control with final time unspecified 202
6.9 Sufficient conditions for a strong minimum 205
6.10 A multistage version of the backward sweep 208
6.11 Sufficient conditions for a local minimum for multistage systems 211

7. **Numerical solution of optimal programming and control problems**

7.1 Introduction 212
7.2 Extremal field methods; dynamic programming 214
7.3 Neighboring extremal algorithms 214
7.4 First-order gradient algorithms 221
7.5 Second-order gradient algorithms 228
7.6 A quasilinearization algorithm 234
7.7 A second-order gradient algorithm for multistage systems 236
7.8 A conjugate-gradient algorithm 237
7.9 Problems with inequality constraints on the control variables 240
7.10 Problems with inequality constraints on the state variables 242
7.11 Mathematical programming approach 243

8. **Singular solutions of optimization and control problems**

8.1 Introduction 246
8.2 Singular solutions of optimization problems for linear dynamic systems with quadratic criteria 247
8.3 Singular solutions of optimization problems for nonlinear dynamic systems 252
8.4 A generalized convexity condition for singular arcs 257
8.5 Conditions at a junction 261
8.6 A resource allocation problem involving inequality constraints and singular arcs 262

9. **Differential games**

9.1 Discrete games 271
9.2 Continuous games 274
9.3 Differential games 277
9.4 Linear-quadratic pursuit-evasion games 282
9.5 A minimax-time intercept problem with bounded controls 289
9.6 A discussion of differential games 293

10. **Some concepts of probability**

10.1 Discrete-valued random scalars 296
10.2 Discrete-valued random vectors 297
10.3 Correlation, independence, and conditional probabilities 299
10.4 Continuous-valued random variables 300
10.5 Common probability mass functions 303
10.6 Common probability density functions 306
10.7 Gaussian density function for a random vector 309

11. **Introduction to random processes**

11.1 Random sequences and the markov property 315
11.2 Gauss-markov random sequences 320
11.3 Random processes and the markov property 326
11.4 Gauss-markov random processes 328
11.5 Approximation of a gauss-markov process by a gauss-markov sequence 342
11.6 State variables and the markov property 344
11.7 Processes with independent increments 346

12. **Optimal filtering and prediction**

12.1 Introduction 348
12.2 Estimation of parameters, using weighted least-squares 349
12.3 Optimal filtering for single-stage linear transitions 359
12.4 Optimal filtering and prediction for linear multistage processes 360
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Optimal filtering for continuous linear dynamic systems with continuous measurements</td>
<td>364</td>
</tr>
<tr>
<td>12.6</td>
<td>Optimal filtering for nonlinear dynamic processes</td>
<td>373</td>
</tr>
<tr>
<td>12.7</td>
<td>Estimation of parameters using a Bayesian approach</td>
<td>377</td>
</tr>
<tr>
<td>12.8</td>
<td>Bayesian approach to optimal filtering and prediction for multistage systems</td>
<td>382</td>
</tr>
<tr>
<td>12.9</td>
<td>Detection of gaussian signal in noise</td>
<td>388</td>
</tr>
<tr>
<td>13.1</td>
<td>Optimal smoothing for single-stage transitions</td>
<td>390</td>
</tr>
<tr>
<td>13.2</td>
<td>Optimal smoothing for multistage processes</td>
<td>393</td>
</tr>
<tr>
<td>13.3</td>
<td>Optimal smoothing and interpolation for continuous processes</td>
<td>395</td>
</tr>
<tr>
<td>13.4</td>
<td>Optimal smoothing for nonlinear dynamic processes</td>
<td>400</td>
</tr>
<tr>
<td>13.5</td>
<td>Sequentially-correlated measurement noise</td>
<td>400</td>
</tr>
<tr>
<td>13.6</td>
<td>Time-correlated measurement noise</td>
<td>405</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>408</td>
</tr>
<tr>
<td>14.2</td>
<td>Continuous linear systems with white process noise and perfect knowledge of the state</td>
<td>408</td>
</tr>
<tr>
<td>14.3</td>
<td>Continuous linear systems with process and measurements containing additive white noise; the certainty-equivalence principle</td>
<td>414</td>
</tr>
<tr>
<td>14.4</td>
<td>Average behavior of an optimally controlled system</td>
<td>416</td>
</tr>
<tr>
<td>14.5</td>
<td>Synthesis of regulators for stationary linear systems with stationary additive white noise</td>
<td>418</td>
</tr>
<tr>
<td>14.6</td>
<td>Synthesis of terminal controllers for linear systems with additive white noise</td>
<td>422</td>
</tr>
<tr>
<td>14.7</td>
<td>Multistage linear systems with additive purely random noise; the discrete certainty-equivalence principle</td>
<td>428</td>
</tr>
<tr>
<td>14.8</td>
<td>Optimum feedback control for nonlinear systems with additive white noise</td>
<td>432</td>
</tr>
</tbody>
</table>

Appendix A — Some basic mathematical facts

A1	Introduction	438
A2	Notation	438
A3	Matrix algebra and geometrical concepts	441
A4	Elements of ordinary differential equations	448
Appendix B—Properties of linear systems

B1 Linear algebraic equations 455
B2 Controllability 455
B3 Observability 457
B4 Stability 458
B5 Canonical transformations 459

References 462
Multiple-choice examination 467
Index 477

LOGICAL DEPENDENCE OF CHAPTERS

Appendices A & B
Deterministic Part = Chapters 1–9

down
↓
1
10
Stochastic Part = Chapters 10–14
N
↓
3
11
Introductory Part = Chapter 1 through Section 5
Chapter 2 through Section 3
Chapters 4, 5(excluding Section 3)
Chapter 7 through Section 2
Chapters 10–12
Advanced Part = Remainder of book
N
8
down
4
12 → 13
14
9←5
6
7

Deterministic Part = Chapters 1–9
Stochastic Part = Chapters 10–14
Introductory Part = Chapter 1 through Section 5
Chapter 2 through Section 3
Chapters 4, 5(excluding Section 3)
Chapter 7 through Section 2
Chapters 10–12
Advanced Part = Remainder of book