Principles of Database Systems

Jeffrey D. Ullman Stanford University

Techn F	-	-			hscl H II		-			dt
					$\langle \rangle$	Ţ	-	Ë	K	
Invent	or-	Nr.	:	4	4		2			*
Sachg										
Stand	ort	:			·····		•••••			

PITMAN

Table of Contents

Chapter 1: An Overview of a Database System 1	
1.1: A database System 1 1.2: Levels of Abstraction in a DBMS 2	
1.3: Differing Perceptions of the Database 6	
1.4: A Model of the Real World 10	
Exercises 17	
Bibliographic Notes 18	
bibliographic Notes 16	
Chapter 2: Physical Data Organization 20	
2.1: A Model for External Storage Organization 20	
2.2: Hashed Files 24	
2.3: Indexed Files 30	
2.4: B-trees 42	
2.5: Files with a Dense Index 49	
2.6: Files with Variable Length records 52	
2.7: Data Structures for Lookup on Nonkey Fields 58	
2.8: Partial Match Retrieval 60	
Exercises 69	
Bibliographic Notes 71	
Chapter 3: The Three Great Data Models 73	
3.1: The Relational Data Model 73	
3.2: The Network Data Model 83	
3.3: The Hierarchical Data Model 91	
3.4: Comparison of the Models 98	
Exercises 100	
Bibliographic Notes 103	
Chapter 4: Data Manipulation Languages for the Relational Model	104
4.1: Relational Algebra 105	
4.2: Relational Calculus 110	
4.3: General Comments Regarding Query Languages 122	
4.4: ISBL: A "Pure" Relational Algebra Language 125	
4.5: SOUARE and SEQUEL: Evolutionary Steps Between	

Algebraic and Calculus Languages 131

*	4.6: QUEL: A Tuple Relational Calculus Language 141	
*	4.7: Query-by-Example: A Domain Calculus Language	149
,	Exercises 162	
	Riblingraphic Notes 164	

Chapter 5: Design Theory for Relational Databases 166

- 5.1: What Constitutes a Bad Database Design? 166
- 5.2: Functional Dependencies 167
- 5.3: Decomposition of Relation Schemes 180
- 5.4: Normal Forms for Relation Schemes 187
- 5.5: Multivalued Dependencies 196
- 5.6: Fourth Normal Form 203

Exercises 206

Bibliographic Notes 208

Chapter 6: Query Optimization 211

- 6.1: General remarks About Optimization 211
- 6.2: Algebraic Manipulation 214
- 6.3: The QUEL Decomposition Algorithm 223
- 6.4: Exact Optimization for a Subset of Relational Queries 232Exercises 239

Bibliographic Notes 240

Chapter 7: The DBTG Proposal 241

- 7.1: Basic DBTG Concepts 241
- 7.2: The Program Environment 248
- 7.3: Navigation Within the Database 250
- 7.4: Other Database Commands 258
- 7.5: Some Other Features of the DBTG Proposal 264
 Exercises 269

Bibliographic Notes 270

Chapter 8: IMS: A Hierarchical System 271

- 8.1: An Overview of IMS 271
- 8.2: The IMS Data Manipulation Language 277
- 8.3: Logical Databases 285
- 8.4: Storage Organizations 292

Exercises 301

Bibliographic Notes 304

Chapter 9: Protecting the Database Against Misuse 305

- 9.1: Integrity 306
- 9.2: Integrity Constraints in Query-by-Example 307
- 9.3: Security 310
- 9.4: Security in Query-by-Example 312
- 9.5: Security in Statistical Databases 314

Exercises 320

Bibliographic Notes 322

Chapter 10: Concurrent Operations on the Database 324

- 10.1: Basic Concepts 325
- 10.2: A Simple Transacton Model 331
- 10.3: A Model with Read- and Write-Locks 337
- 10.4: A Read-Only, Write-Only Model 340
- 10.5: Concurrency for Hierarchically Structured Items 347
- 10.6: Protecting Against Crashes 351

Exercises 356

Bibliographic Notes 358

Bibliography 360

Index 372