ystems

Vol. 16-59: Lecture 1-29, please contact

r linearen Dekomposition.

Economies. V, 128 pages.

ontrolltheorie in stetigen 04 Seiten. 1971.

it variabler Bearbeitungs-

Mitarbeit von J. Burgereiten. 1972.

ation im Operations Re-

timierung in Funktionen-

puter Systems Analysis.

Korn, Supercritical Wing

Mathematical Theory of

idability. An Introduction 5 pages. 1972.

y. V, 133 pages. 1972. cts of Floods. Investiga-

vestment. Behavior in the

nd Produktionstheorie II.

n, Numerical Methods in pages. 1972.

abschnittweise linearer

oduktionsfunktionen. VI,

Bericht Nr. 3. 1. Fachchen, 9.–11. März 1971. aft für Informatik von H. 972.

ng bei mehrfacher Ziel-

imax via l'Analyse Conprie et Algorithmes, VII,

2. Jahrestagung, Karlsim Auftrag der Gesell-XI, 576 Seiten, 1973.

Aathematical Program-

Mathematical Modelled by N. Hawkes. VI,

Engineering. Edited b

erators and Systems X

Pontinuation on page 155 Hegro

9.1 WOL Lecture Notes in Economics and Mathematical Systems

Managing Editors: M. Beckmann and H. P. Künzi

Econometrics

INSTITUT FOR PHYSIKALISCHE GEODĂSIE TECHNISCHE HOCHSCHULE PETEHSUNSTHASSE 13 D-6100 DARMSTADT

LEAT Maid ANAA

182

Jürgen Wolters

Stochastic Dynamic Properties of Linear Econometric Models

Springer-Verlag Berlin Heidelberg New York 1980

TABLE OF CONTENTS

CHAPTER	I: THE LINEAR DYNAMIC ECONOMETRIC MODEL							
1.	INTRODUCTION 1							
2.	STRUCTURAL, REDUCED AND FINAL FORM 3							
3.	SOLUTIONS OF THE MODEL 4							
	3.1 Solutions with Fixed Initial							
	Conditions							
	3.2 Solutions with Stochastic Initial							
	Conditions							
<u>CHAPTER</u>	II: SPECTRAL REPRESENTATION OF THE LINEAR							
	DYNAMIC MODEL WITH CONSTANT COEFFICIENTS							
1.	DERIVATION OF THE SPECTRAL MATRIX							
2.	NUMERICAL APPROACHES							
	2.1 Simulations 13							
	2.2 Analytical Solutions 14							
	2.3 Analytical Simulations 17							
	2.4 Comparison of the Methods 18							
3.	AN EXAMPLE: EFFECTS OF RESIDUALS 29							
	3.1 Transient Response 29							
	3.2 Alternative Error Processes							
	3.3 Alternative Exogenous Variables							
4.	SPECTRAL MATRIX IN UNSTABLE MODELS							
	4.1 Evolutionary Spectrum 50							
	4.2 The Chow and Levitan Approach							
	4.3 Application 54							
Ċ.								
<u>CHAPTER</u>	<u>III:</u> SPECTRAL REPRESENTATION OF A LINEAR							
	DYNAMIC ECONOMETRIC MODEL WITH							
	STOCHASTIC COEFFICIENTS							
1.	METHODOLOGICAL APPROACH							
2.	EFFECTS OF ALTERNATIVE ESTIMATION METHODS							
	ON THE DYNAMIC PROPERTIES OF AN AGGREGATED							
	DEMAND MODEL OF THE FRG							
	2.7 Specification and Estimation of the							
	2.2 Stability of the Model							
	2.3 rower Spectra of the Endogenous							
	variaoies							

TABLE OF CONTENTS cont.

	2.4	Cross S	pectra c	of the	Endo	genous				
		Variabl	es			• • • • • •			• • • • • • • • •	83
3.	EMPI	RICAL SP	ECTRAL A	NALYS	IS	• • • • • •	• • • • • •	• • • • • •	•••••	92
011AD750	ту.	FFFFCTS	OF FYOGE	NOUS	VARTA	BLES				
UINI I BIL	<u> </u>	ON TUT	CYCLIC F	POPFR	TTES	OF AN				
		TCONOME	TRIC MOL	NOI DIC	11.00	OF AU				
1	ΤΜΦΡ	ODUCTION	INIO MOL	. םמי						100
1.	TNTU	WIC DDOLLOW		••••••	AGGRE	647ED	•••••		•••••	,
٨.	DINA	MIC FROF	EULLES C	I AN	AGOILD	UNIDD				101
		L OF INE	ention a	nd Fa	••••• +imo+	••••••	••••	•••••	•••••	101
	~•!	of the	Model			1011				101
	2 2	Determi	nouer) • • • • • •) v = e = = =	•••••	nortie				103
	~ • ~	Creatfi	antion (of the	Exog					
	~•)	Verieri		JI 0110	DAUE	enous				10/
	2 /	Cualia	Bronont	log wi	+ h Ro	enect	•••••			104
	<•4	byerre	Fropero.	Les Wi	deble	spect				108
2	0.004.0		EXOSEDO	ibo 18 var	Table	8	•••••			111
٥.	STAD	C		1.110 ••	•••••		••••			111
	1.6	Delette	L COSU I	i an au	.011 ••	••••••				, ,,,,
	3.2	Relativ	e LIIIC	lency	OI MC	one cary	,			114
		and Fis	scal Pol:	1cy			••••	• • • • • •		
		TUNADY								101
CHAPTER	<u>V:</u> S	UMMARI .		• • • • • •		•••••	••••	• • • • • •		
APPENDI	х А									. 124
<u></u>										416
APPENDI	<u>хв</u>	••••	• • • • • • • •	• • • • • •				• • • • • •		. 140
BEFEREN	CES									. 148
	<u></u>									•

THE LINEAR DYNA

1. INTRODUCTION

Previous work on this t who takes into consideration unco explain business cycle motions. I apply an autoregressive and a mov show that these series have many characterize economic time series Frisch (1933) links eco

dynamic deterministic models - wi cycle analysis. In general, the c namic econometric models produce cycles observed in reality are no deration of residuals may resolve Haavelmo (1940) applied

process with real roots and poin related random numbers leads to (1952) and Kalecki (1956), who use a stable system an error process pendent random variables produce tudes.

Adelman and Adelman (1 of a larger estimated econometri through stochastic simulation ex by the NBER-method. They conclud planation of business cycles can ven by Arzac (1967) for the Chow thodological approach. However, properties of four large models peared for the first time in Hic Sowey (1973) also use simulation ties of two econometric models o stochastic simulations of the "W for the FRG are presented in Kru

For investigating the Ed models one has in addition th developed by Chow (1968, 1975) based on Fourier methods and ass

1) Quoted from Frisch (1933, p.