Design of Diversion Weirs

Small Scale Irrigation in Hot Climates

Rozgar Baban

Contents

Acknowledgements	xi		
Preface			
Part 1 INTRODUCTION	1		
1 Site Investigation	5		
1.1 Introduction	5		
1.2 Social and Economic Aspects	5		
1.3 Technical Considerations	6		
1.3.1 Location of the weir	7		
1.3.2 Type of structure	8		
1.3.3 Topographic survey	9		
1.3.4 Soil investigation	9		
1.3.5 Hydrological data	9		
Part 2 TOPOGRAPHIC SURVEY			
2 Topographic Survey of the Construction Site	13		
2.1 Fixing Benchmarks	13		
2.2 Topographic Survey of the Project Area	14		
2.3 Location of the Weir	14		
Part 3 SOIL INVESTIGATION	17		
3 Soil Investigation	19		
3.1 Objectives of the Investigation	19		
3.2 Soil Profile under the Foundation	20		
3.3 Soil Classification	20		
3.4 Permeability of the Foundation Soil	21		

3.5 Unit Weight, Angle of Internal Friction and Cohesion of Soil . 21

.

	3.6	Conclusion	22
	3.7	Reference	22
Pa	rt 4 I	HYDROLOGICAL ANALYSIS	23
4	Hyd	rological Analysis	25
	4.1	Introduction	25
	4.2	Maximum Design Discharge	25
	4.3	Mean River Discharge in the Design	26
	4.4	Minimum River Discharge	29
	4.5	The Design Discharge	29
	4.6	Frequency Analysis of Flood Records	31
	4.7	Theoretical Frequency Distribution	33
		4.7.1 The Gumbel distribution	34
		4.7.2 Confidence limits of the distribution	30
	4.0	4.7.3 Log Pearson type III distribution	3/
	4.8	Measurement of Peak Discharge by the Slope-Area Method	40
	4.9	References	43
n			
ra	irt 5 I	HADRAULIC ANALYSIS UP.	
	ĩ	SURFACE FLOW	45
5	Sur	face Flow Analysis	47
	5.1	Introduction	47
	5.2	General Design Consideration of the Weir	47
		5.2.1 Crest elevation	47
		5.2.2 Length of the weir	48
		5.2.3 Shape of the weir	49
	5.3	Discharge over Weirs	49
		5.3.1 WES-standard weir	51
		5.3.2 Horizontal broad crested weir	56
	5.4	Water Profile at the Weir Site	58
		5.4.1 Water profile downstream of the weir	59
		5.4.2 Water profile upstream of the weir	72
	5.5	Determination of the Tail Water Depth	80
	5.6	Flow Through Sluice Gates	81
		5.6.1 Design requirements	81
		5.6.2 Discharge through sluice gates	83
	5.7	Flow Between Piers	83
	5.8	Canal Head Regulator	84
		5.8.1 Open intake	85
	_	5.8.2 Design of culverts	85
	5.9	Design of De-silting Basin	89
		5.9.1 Dimension of the basin	89
		5.9.2 Cleaning time of de-silting basin	- 90

	5.10	Automatic Discharge Control Intake	91
		5.10.1 The design procedure	91
	5.11	Trashrack Losses	94
	5.12	References	95
Pa	rt 6 l	UPLIFT PRESSURE UNDER WEIR FOUNDATION	97
6	Upli	ift Pressure Under Weir Foundation	99
	6.1	Introduction	99
	6.2	Methods of the Seepage Analysis	100
		6.2.1 Bligh's creep theory	100
		6.2.2 Lane's weighted creep theory	101
		6.2.3 Flow nets	103
		6.2.4 Khosla's theory of independent variables	108
		6.2.5 Analytical method	118
	6.3	Energy Dissipators and its Effect on the Apron Length	118
	6.4	Protection Work for the Structure	120
		6.4.1 Length of the protection work	121
		6.4.2 Size of riprap stones	122
		6.4.3 Thickness of the layers	123
		6.4.4 Grain size distribution of the filter materials	123
	0.5	References	120
Pa	rt 7 (SEDIMENT CONTROL DEVICES	127
7	Sed	iment Control Devices	131
	7.1	King's Vanes	132
		7.1.1 The design procedure	133
	7.2	Vortex Vane	134
		7.2.1 The simplified design procedure	136
	7.3	Tunnel or Silt Platform	139
		7.3.1 The design criteria	139
	7.4	Vortex Tube	142
		7.4.1 Determination of the head loss	145
		7.4.2 The design procedures	148
	7.5	Tunnel Type Extractor in Main Canal	151
		7.5.1 The design criteria	151
		7.5.2 The design procedures	153
	7.6	Settling or De-silting Basin	155
	7.7	Design of the Escape Canal	157
		7.7.1 The design procedure	159
	7.8	Open Weir on Seasonal River	166
		7.8.1 Design of the weir	168
		7.8.2 Operation of the weir	168
	7.9	References	169

Part 8 STRUCTURAL ANALYSIS OF DIVERSION WEIRS AND THE INTAKE STRUCTURES

8	Stru	ctural Ana	lysis of Diversion Weir and		
	Inta	ke Structu	res	175	
	8.1	Main Weir		175	
		8.1.1 Actin	g forces on weir	175	
		8.1.2 Gener	al stability conditions	178	
		8.1.3 Critic	al cases to be considered	180	
		8.1.4 Weirs	constructed non-monolithically with		
		the fo	undation	180	
		8.1.5 Weirs	constructed monolithically with the foundation	184	
		8.1.6 Desig	n of the weir and apron	187	
	8.2	Design of the	Retaining Walls	193	
		8.2.1 Activ	e pressure in cohesionless soil	193	
		8.2.2 Cohes	sive soils	197	
		8.2.3 Passiv	ve force on the retaining wall	198	
		8.2.4 Stabil	ity analysis of retaining walls	198	
	8.3	8.3 Structural Design of Intakes		200	
		8.3.1 Bridg	e-type intakes	200	
		8.3.2 Circu	lar culverts	205	
	8.4	8.4 Constructions Joints			
	8.5	References		214	
Pa	rt 9]	INANCIA	L ANALYSIS OF	215	
	(CONSTRU	CTING WEIRS	215	
9	Fin	ncial Ana	lysis of Constructing Weirs	217	
	9.1	Cost of the S	tructure to the Farmers	217	
	9.2	Selection of t	he Weir Construction Materials	220	
	9.3	Reference		224	

ċ

225

171