
The Unified
Software Development
Process

Ivar Jacobson
Grady Booch
James Rumbaugh
Rational Software Corporation

ADDISON-WESLEY
An Imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts • Harlow, England • Menlo Park, California
Berkeley, California • DoruMills, Ontario • Sydney
Bonn • Amsterdam • Totcyo • Mexico City



Contents

Preface xvii

Part I: The Unified Software Development Process 1

Chapter 1: The Unified Process: Use-Case Driven,
Architecture-Centric, Iterative, and Incremental 3

1.1 The Unified Process in a Nutshell 4
1.2 The Unified Process Is Use-Case Driven 5
1.3 The Unified Process Is Architecture-Centric 6
1.4 The Unified Process Is Iterative and Incremental
1.5 The Life of the Unified Process 8

1.5.1 The Product 9
1.5.2 Phases within a Cycle 11

1.6 An Integrated Process 13



vi Contents

Chapter 2: The Four Ps: People, Project, Product,
and Process in Software Development 15

2.1 People Are Crucial 16
2.1.1 Development Processes Affect People 16
2.1.2 Roles Will Change 17
2.1.3 Turning "Resources" into "Workers" 18

2.2 Projects Make the Product 19
2.3 Product Is More Than Code 20

2.3.1 What Is a Software System? 20
2.3.2 Artifacts 21
2.3.3 A System Has a Collection of Models 21
2.3.4 What Is a Model? 22
2.3.5 Each Model Is a Self-Contained View of the System 22
2.3.6 Inside a Model 23
2.3.7 Relationships between Models 23

2.4 Process Directs Projects 24
2.4.1 Process: A Template 24
2.4.2 Related Activities Make Up Workflows 25
2.4.3 Specializing Process 26
2.4.4 Merits of Process 27

2.5 Tools Are Integral to Process 28
2.5.1 Tools Impact Process 28
2.5.2 Process Drives Tools 28
2.5.3 Balance Process and Tools 29
2.5.4 Visual Modeling Supports UML 29
2.5.5 Tools Support the Whole Life Cycle 30

2.6 References 31

Chapter 3: A Use-Case-Driven Process 33

3.1 Use-Case-Driven Development in Brief 35
3.2 Why Use Cases? 37

3.2.1 To Capture the Value Adding Requirements 37
3.2.2 To Drive the Process 38
3.2.3 To Devise the Architecture and More... 39

3.3 Capturing the Use Cases 40
3.3.1 The Use-Case Model Represents the Functional

Requirements 40
3.3.2 Actors Are the Environment of the System 41
3.3.3 Use Cases Specify the System 41

3.4 Analysis, Design, and Implementation to Realize the Use Cases 42
3.4.1 Creating the Analysis Model from the Use Cases 43
3.4.2 Each Class Must Fulfill All Its Collaboration Roles 48



Contents vii

3.4.3 Creating the Design Model from the Analysis Model 48
3.4.4 Subsystems Group Classes 51
3.4.5 Creating the Implementation Model from the Design Model 53

3.5 Testing the Use Cases 55
3.6 Summing Up 57
3.7 References 57

Chapter 4: An Architecture-Centric Process 59

4.1 Architecture in Brief 60
4.2 Why We Need Architecture 62

4.2.1 Understanding the System 62
4.2.2 Organizing Development 63
4.2.3 Fostering Reuse 63
4.2.4 Evolving the System 64

4.3 Use Cases and Architecture 65
4.4 The Steps to an Architecture 69

4.4.1 The Architecture Baseline Is a "Small, Skinny" System 69
4.4.2 Using Architecture Patterns 71
4.4.3 Describing Architecture 74
4.4.4 The Architect Creates the Architecture 76

4.5 Finally, an Architecture Description! 77
4.5.1 The Architectural View of the Use-Case Model 78
4.5.2 The Architectural View of the Design Model 78
4.5.3 The Architectural View of the Deployment Model 81
4.5.4 The Architectural View of the Implementation Model 83

4.6 Three Interesting Concepts 83
4.6.1 What Is Architecture? 83
4.6.2 How Is It Obtained? 83
4.6.3 How Is It Described? 83

4.7 References 84

Chapter 5: An Iterative and Incremental Process 85

5.1 Iterative and Incremental in Brief 86
5.1.1 Develop in Small Steps 87
5.1.2 What Iteration Is Not 88

5.2 Why Iterative and Incremental Development? 89
5.2.1 Mitigating Risks 89
5.2.2 Getting a Robust Architecture 91
5.2.3 Handling Changing Requirements 91
5.2.4 Allowing for Tactical Changes 92
5.2.5 Achieving Continuous Integration 92
5.2.6 Attaining Early Learning 93



viii Contents

5.3 The Iterative Approach is Risk-Driven 94
5.3.1 Iterations Alleviate Technical Risks 95
5.3.2 Management Is Responsible for Nontechnical Risks 97
5.3.3 Dealing with Risks 97

5.4 The Generic Iteration 98
5.4.1 What an Iteration Is 98
5.4.2 Planning the Iterations 100
5.4.3 Sequencing the Iterations 100

5.5 The Result of an Iteration Is an Increment 101
5.6 Iterations over the Life Cycle 102
5.7 Models Evolve from Iterations 105
5.8 Iterations Challenge the Organization 106
5.9 References 106

Part II: The Core Workflows 109

Chapter 6: Requirements Capture: From Vision to Requirements 111

6.1 Why Requirements Capture Is Difficult 112
6.2 The Purpose of the Requirements Workflow 113
6.3 Overview of Requirements Capture 113
6.4 The Role of Requirements in the Software Life Cycle 118
6.5 Understanding the System Context Using a Domain Model 119

6.5.1 What Is a Domain Model? 119
6.5.2 Developing a Domain Model 121
6.5.3 Use of the Domain Model 121

6.6 Understanding the System Context Using a Business Model 122
6.6.1 What Is a Business Model? 122
6.6.2 How to Develop a Business Model 124
6.6.3 Find Use Cases from a Business Model 126

6.7 Supplementary Requirements 128
6.8 Summary 130
6.9 References 130

Chapter 7: Capturing the Requirements as Use Cases 131
7.1 Introduction 131
7.2 Artifacts 133

7.2.1 Artifact: Use-Case Model 133
7.2.2 Artifact: Actor 134
7.2.3 Use Case 135
7.2.4 Artifact: Architecture Description (View of the

Use-Case Model) 139



Contents ix

7.2.5 Artifact: Glossary 139
7.2.6 Artifact: User-Interface Prototype 140

7.3 Workers 140
7.3.1 Worker: System Analyst 140
7.3.2 Worker: Use-Case Specifier 141
7.3.3 User-Interface Designer 142
7.3.4 Worker: Architect 142

7.4 Workflow 143
7.4.1 Activity: Find Actors and Use Cases 144
7.4.2 Activity: Prioritize Use Cases 153
7.4.3 Activity: Detail a Use Case 153
7.4.4 Activity: Prototype User Interface 160
7.4.5 Activity: Structure the Use-Case Model 166

7.5 Summary of the Requirements Workflow 171
7.6 References 172

Chapter 8: Analysis 173
8.1 Introduction 173
8.2 Analysis in Brief 176

8.2.1 Why Analysis Is not Design or Implementation 176
8.2.2 The Purpose of Analysis: Summary 177
8.2.3 Concrete Examples of When to Employ Analysis 178

8.3 The Role of Analysis in the Software Life Cycle 179
8.4 Artifacts 181

8.4.1 Artifact: Analysis Model 181
8.4.2 Artifact: Analysis Class 181
8.4.3 Artifact: Use-Case Realization—Analysis 186
8.4.4 Artifact: Analysis Package 190
8.4.5 Artifact: Architecture Description (View of the

Analysis Model) 193
8.5 Workers 194

8.5.1 Worker: Architect 194
8.5.2 Worker: Use-Case Engineer 194
8.5.3 Worker: Component Engineer 195

8.6 Workflow 196
8.6.1 Activity: Architectural Analysis 196
8.6.2 Activity: Analyze a Use Case 203
8.6.3 Activity: Analyze a Class 207
8.6.4 Activity: Analyze a Package 211

8.7 Summary of Analysis 213
8.8 References 214



Contents

Chapter 9: Design 215

9.1 Introduction 215
9.2 The Role of Design in the Software Life Cycle 216
9.3 Artifacts 217

9.3.1 Artifact: Design Model 217
9.3.2 Artifact: Design Class 218
9.3.3 Artifact: Use-Case Realization—Design 221
9.3.4 Artifact: Design Subsystem 224
9.3.5 Artifact: Interface 226
9.3.6 Artifact: Architecture Description (View of the Design Model) 226
9.3.7 Artifact: Deployment Model 227
9.3.8 Artifact: Architecture Description (View of the

Deployment Model) 228
9.4 Workers 229

9.4.1 Worker: Architect 229
9.4.2 Worker: Use-Case Engineer 230
9.4.3 Worker: Component Engineer 230

9.5 Workflow 231
9.5.1 Activity: Architectural Design 232
9.5.2 Activity: Design a Use Case 249
9.5.3 Activity: Design a Class 255
9.5.4 Activity: Design a Subsystem 263

9.6 Summary of Design 265
9.7 References 266

Chapter 10: Implementation 267

10.1 Introduction 267
10.2 The Role of Implementation in the Software Life Cycle 268
10.3 Artifacts 269

10.3.1 Artifact: Implementation Model 269
10.3.2 Artifact: Component 269
10.3.3 Artifact: Implementation Subsystem 272
10.3.4 Artifact: Interface 274.
10.3.5 Artifact: Architecture Description (View of the

Implementation Model) 275
10.3.6 Artifact: Integration Build Plan 276

10.4 Workers 277
10.4.1 Worker: Architect 277
10.4.2 Worker: Component Engineer 277
10.4.3 Worker: System Integrator 279

10.5 Workflow 279
10.5.1 Activity: Architectural Implementation 280
10.5.2 Activity: Integrate System 283



Contents xi

10.5.3 Activity: Implement a Subsystem 285
10.5.4 Activity: Implement a Class 288
10.5.5 Activity: Perform Unit Test 289

10.6 Summary of Implementation 293
10.7 References 293

Chapter 11: Test 295
11.1 Introduction 295
11.2 The Role of Testing in the Software Life Cycle 296
11.3 Artifacts 297

11.3.1 Artifact: Test Model 297
11.3.2 Artifact: Test Case 297
11.3.3 Artifact: Test Procedure 300
11.3.4 Artifact: Test Component 302
11.3.5 Artifact: Plan Test 302
11.3.6 Artifact: Defect 302
11.3.7 Artifact: Evaluate Test 302

11.4 Workers 303
11.4.1. Worker: Test Designer 303
11.4.2 Worker: Component Engineer 303
11.4.3 Worker: Integration Tester 303
11.4.4 Worker: System Tester 304

11.5 Workflow 304
11.5.1 Activity: Plan Test 305
11.5.2 Activity: Design Test 306
11.5.3 Activity: Implement Test 309
11.5.4 Activity: Perform Integration Test 310
11.5.5 Activity: Perform System Test 311
11.5.6 Activity: Evaluate Test 311

11.6 Summary of Testing 313
11.7 References 313

Part III: Iterative and Incremental Development 315

Chapter 12: The Generic Iteration Workflow 317

12.1 The Need for Balance 318
12.2 The Phases Are the First Division of Work 319

12.2.1. Inception Phase Establishes Feasibility 319
12.2.2 Elaboration Phase Focuses on "Do-Ability" 320
12.2.3 Construction Phase Builds the System 321
12.2.4 Transition Phase Moves into the User Environment 322



xii Contents

12.3 The Generic Iteration Revisited 322
12.3.1 Core Workflows Repeat in Each Iteration 322
12.3.2 Workers Participate in the Workflows 323

12.4 Planning Precedes Doing 324
12.4.1 Plan the Four Phases 325
12.4.2 Plan the Iterations 326
12.4.3 Think Long Term 327
12.4.4 Plan the Evaluation Criteria 327

12.5 Risks Affect Project Planning 328
12.5.1 Manage a Risk List 328
12.5.2 Risks Affect the Iteration Plan 329
12.5.3 Schedule Risk Action 329

12.6 Use-Case Prioritization 330
12.6.1 Risks Specific to a Particular Product 331
12.6.2 Risk of Not Getting the Architecture Right 331
12.6.3 Risk of Not Getting Requirements Right 332

12.7 Resources Needed 333
12.7.1 Projects Differ Widely 334
12.7.2 A Typical Project Looks Like This 335
12.7.3 Complex Projects Have Greater Needs 335
12.7.4 New Product Line Calls for Experience 336
12.7.5 Paying the Cost of the Resources Used 337

12.8 Assess the Iterations and Phases 338
12.8.1 Criteria Not Achieved 338
12.8.2 The Criteria Themselves 339
12.8.3 The Next Iteration 339
12.8.4 Evolution of the Model Set 340

Chapter 13: Inception Launches the Project 341

13.1 The Inception Phase in Brief 341
13.2 Early in the Inception Phase 342

13.2.1 Before the Inception Phase Begins 342
13.2.2 Planning the Inception Phase 343
13.2.3 Expanding the System Vision 344
13.2.4 Setting the Evaluation Criteria 344

13.3 The Archetypal Inception Iteration Workflow 346
13.3.1 Introduction to the Five Core Workflows 346
13.3.2 Fitting the Project into the Development Environment 348
13.3.3 Finding Critical Risks 348

13.4 Execute the Core Workflows, Requirements to Test 348
13.4.1 Capture the Requirements 350
13.4.2 Analysis 352



Contents xiii

13.4.3 Design 353
13.4.5 Test 354

13.5 Make the Initial Business Case 354
13.5.1 Outline Business Bid 354
13.5.2 Estimate Return on Investment 356

13.6 Assess the Iteration(s) in the Inception Phase 356
13.7 Planning the Elaboration Phase 357
13.8 The Deliverables for the Inception Phase 358

Chapter 14: The Elaboration Phase Makes the
Architectural Baseline 359

14.1 The Elaboration Phase in Brief 359
14.2 Early in the Elaboration Phase 360

14.2.1 Planning the Elaboration Phase 361
14.2.2 Building the Team 361
14.2.3 Modifying the Development Environment 361
14.2.4 Setting Evaluation Criteria 361

14.3 The Archetypal Elaboration Iteration Workflow 362
14.3.1 Capture and Refine Most of the Requirements 363
14.3.2 Develop the Architectural Baseline 364
14.3.3 Iterate While the Team Is Small 364

14.4 Execute the Core Workflows—Requirements to Test 364
14.4.1 Capture the Requirements 365
14.4.2 Analysis 367
14.4.3 Design 372
14.4.4 Implementation 374
14.4.5 Test 376

14.5 Make the Business Case 377
14.5.1 Prepare the Business Bid 378
14.5.2 Update Return on Investment 378

14.6 Assess the Iterations in the Elaboration Phase 378
14.7 Planning the Construction Phase 379
14.8 The Key Deliverables 380

Chapter 15: Construction Leads to Initial Operational Capability 381
15.1 The Construction Phase in Brief 382
15.2 Early in the Construction Phase 382

15.2.1 Staffing the Phase 383
15.2.2 Setting the Evaluation Criteria 383

15.3 The Archetypal Construction Iteration Workflow 384



xiv Contents

15.4 Execute the Core Workflows—Requirements to Testing 385
15.4.1 Requirements 387
15.4.2 Analysis 388
15.4.3 Design 389
15.4.4 Implementation 390
15.4.5 Test 391

15.5 Controlling the Business Case 393
15.6 Assess the Iterations and the Construction Phase 393
15.7 Planning the Transition Phase 393
15.8 The Key Deliverables 394

Chapter 16: Transition Completes Product Release 395

16.1 The Transition Phase in Brief 396
16.2 Early in the Transition Phase 397

16.2.1 Planning the Transition Phase 397
16.2.2 Staffing the Transition Phase 399
16.2.3 Setting the Evaluation Criteria 399

16.3 The Core Workflows Play a Small Role in this Phase 400
16.4 What We Do in the Transition Phase 401

16.4.1 Getting the Beta Release Out 401
16.4.2 Installing the Beta Release 402
16.4.3 Responding to the Test Results 402
16.4.4 Adapting the Product to Varied User Environments 403
16.4.5 Completing the Artifacts 404
16.4.6 When Does the Project End? 404

16.5 Completing the Business Case 405
16.5.1 Controlling Progress 405
16.5.2 Review of the Business Plan 405

16.6 Assess the Transition Phase 406
16.6.1 Assess the Iterations and the Phase 406
16.6.2 Postmortem of the Project 407

16.7 Planning the Next Release or Generation 407
16.8 The Key Deliverables 407

Chapter 17: Making the Unified Process Work 409

17.1 The Unified Process Helps You Deal with Complexity 409
17.1.1 The Life Cycle Objectives 410
17.1.2 The Life Cycle Architecture 410
17.1.3 Initial Operational Capability 411
17.1.4 Product Release 411



Contents xv

17.2 The Major Themes 411
17.3 Management Leads Conversion to Unified Process 412

17.3.1 The Case for Action 413
17.3.2 The Reengineering Directive Persuades 413
17.3.3 Implementing the Transition 414

17.4 Specializing the Unified Process 416
17.4.1 Tailoring the Process 416
17.4.2 Filling in the Process Framework 417

17.5 Relate to the Broader Community 418
17.6 Get the Benefits of the Unified Process 418
17.7 References 419

Appendix A: Overview of the UML 421

A.1 Introduction 421
A. 1.1 Vocabulary 422
A.1.2 Extensibility Mechanisms 422

A.2 Graphical Notation 423
A.2.1 Structural Things 423
A.2.2 Behavioral Things 424
A.2.3 Grouping Things 425
A.2.4 Annotational Things 425
A.2.5 Dependency Relationships 425
A.2.6 Association Relationships 425
A.2.7 Generalization Relationships 426
A.2.8 Extensibility Mechanisms 426

A.3 Glossary of Terms 426
A.4 References 433

Appendix B: The Unified Process-Specific Extensions of the UML 435

B.1 Introduction 435
B.2 Stereotypes 435
B.3 Tagged Values 438
B.4 Graphical Notation 439
B.5 References 439

Appendix C: General Glossary 441
C.1 Introduction 441
C.2 Terms 441

Index 451


