ENGINEERING PLASTICITY

LB Darmeterty

W. JOHNSON

Professor of Mechanical Engineering University of Manchester Institute of Science and Technology

and

P. B. MELLOR

Professor of Mechanical Engineering University of Bradford

VAN NOSTRAND REINHOLD COMPANY LONDON

NEW YORK

CINCINNATI

TORONTO

MELBOURNE

CONTENTS

	Preface	nage v
	Note on S.I. Units	vii
	Chapter 1 Introduction	
1.1	Phenomenological Nature of Theory of Plasticity	1
1.2	The Load-Extension Diagram in Simple Tension	1
1.3	The True Stress-Strain Diagram in Simple Tension	4
1.4	An Example of the Use of the Volume Constancy Equation:	
	Drifting, Low-speed Plate Perforation or Hole Flanging	6
1.5	Some Deviations from the Stress-Strain Curves described	
	Above	8
1.6	Frictionless Compression: Homogeneous Compression	10
1.7	General Approach to Stress Analysis in Elasticity and	
	Plasticity	12
	1.7.1 The Theory of Elasticity in Isotropic Solids	12
	1.7.2 The Theory of Plasticity	13
1.8	Empirical Equations to Stress-Strain Curves	15
1.9	Empirical Equations and the Maximum Load in Simple	
	Tension	17
1.10	Compression of a Work-hardening Material: Adiabatic	
	Temperature Rise	18
1.11	Brittle and Ductile Materials: Cleavage- and Shear-type	
	Fractures: Transition Temperature	19
1.12	The Effects of Hydrostatic Pressure	20
1.13	Strain Rate in Simple Uniaxial Compression and Tension	22
1.14	Cold- and Hot-working: Recrystallization and Homologous	
1.16	Temperature	23
1.15	Strain Rate in Relation to Recrystallization Temperature	27
1.16	A Point of Reversal in Compression	27
1.17	The Ratio of Dynamic to Static Yield Stress	28
1.18	Some Test Techniques for Providing Uniaxial Compression	
	and Simple Stress-Strain Data with Special Reference to Rate Effects	
1 10		30
1.19	Some Proposed Formulae for Correlating Stress, Strain, Strain Rate and Temperature	22
1.20	The Yield Stress of Steel at about 15 °C	32 33
1.20	References	33 34
	1/01/01/00/03	54

•

х

ł

CHAPTER 2 STRESS

2.1 2.2 2.3 2.4 2.5 2.6	Definitions The Equations of Force Equilibrium Couple Equilibrium Three-dimensional Stress Systems Mohr's Circles for Three-dimensional Stress Systems The Shortcoming of Mohr's Circle for Three-dimensional Stress Systems References	39 41 44 49 53 54
	CHAPTER 3 STRAIN	
3.1 3.2 3.3	Infinitesimal Strains as Functions of Displacement A Note on the Strain Tensor The Geometry of Large and Small Strains	55 59 59
	Chapter 4 The Yield Criteria of Metals	
4.1 4.2 4.3 4.4	General Considerations Stress Space Representations of Yield Criteria Shear and Volumetric Resilience and the Mises Criterion Experimental Evidence for the Tresca and Mises Criteria of	63 65 70
4.5 4.6	Yielding Isotropic Work-hardening Materials An Anisotropic Yield Criterion References	72 75 76 78
	CHAPTER 5 STRESS-STRAIN RELATIONS	
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	The Elastic Stress-Strain Relations The Prandtl-Reuss Equations The Lévy-Mises Equations Work-hardening The Complete Stress-Strain Relations Total Strain Theory The Lévy-Lode Variables The Plastic Potential and Flow Rules The Principle of Maximum Work Dissipation Flow Rule for Anisotropic Material Generalized Stress and Strain Relations for Anisotropic Work-hardening Material References	80 81 83 86 87 88 89 91 94 96 97
	Chapter 6 Methods of Determining Work-hardening	

CHARACTERISTICS

6.1	Introduction		100
6.2	Simple Tension		102

٠.

6.3	Balanced Biaxial Tension	103
6.4	Rolling and Simple Tension	109
6.5	Simple Compression	110
6.6	Plane Strain Compression	114
6.7	Simple Torsion	118
	References	121

Chapter 7 Elementary Analyses of the Elastic-Plastic Bending of Beams, Rings and Plates

7.1	Introduction	124
7.2	Simple Theory of Plastic Bending	125
	7.2.1 Straight Rectangular Section Beams	125
	7.2.2 Expressions for <i>M</i> , Using a Non-linear Stress-Strain Law	127
	7.2.3 Expression for Deflection	127
	7.2.4 Shear Stress Distribution	128
	7.2.5 Idealized Materials in Bending	129
	7.2.6 Shape Factor	131
	7.2.7 Plastic Asymmetrical Bending	133
7.3	Plastic Bending Followed by Elastic Unloading	133
	7.3.1 Residual Stress Distribution	133
	7.3.2 Springback Calculations	135
7.4	The Collapse Load in Simple Structures: Plastic Hinges	137
	7.4.1 The Built-in Beam	137
	7.4.2 Portal Frames	138
	7.4.3 Oval Links and Circular Rings	139
	7.4.4 Stud Link	141
7.5	The Diagram of Angular Velocities	142
7.6	The Plane Strain Bending of Cantilevers by a Transverse Shear	
	Force	144
7.7	Bending in Wide Ring Cogging	145
7.8	Combined Bending and Tension: Example of Use of a Yield	
	Inequality	146
	7.8.1 Elastic Analysis	146
	7.8.2 Plastic Analysis	147
7.9	The Elastic-Plastic Bending of Wide Plates having an Initial	
	Curvature	150
	7.9.1 Purely Elastic Case	151
	7.9.2 Fully Plastic Case	151
	7.9.3 Elastic-Plastic Case	152
	7.9.4 Residual Stresses	153
	7.9.5 Additional References	154
7.10	Sheet and Plate Bending as a Forming Operation	154
	7.10.1 Press Brake Forming of Straight Edges	154
	7.10.2 Plate Bending Using Bending Machines	155
	References	156

.

xi

Chapter 8 Torsion of Prismatic Bars of Circular and Non-circular Section

8.1	 Elastic Analyses 8.1.1 Introduction 8.1.2 The Analysis of Torsion Following Saint-Venant 8.1.3 Elliptical Cross-section Bar 8.1.4 Equilateral Triangle 8.1.5 The Straightforward Nature of the above two Examples 8.1.6 Rectangular and Square Sections 8.1.7 A Circular Shaft with a Circular Keyway 	159 159 160 165 167 167 167 169 170
	8.1.8 The Semi-inverse Solution to Saint-Venant's Torsion	
	Problem	171
	8.1.9 Point Matching 8.1.10 The Torsion of Hollow Cylinders	171
	8.1.11 The Membrane Analogy	175
	8.1.12 Other Analogies	182
8.2	Plastic Analyses	183
	8.2.1 Plastic Yielding in a Prismatic Bar and the Sand Heap Analogy	183
	8.2.2 Unloading in Hollow Bars Following Elastic-Plastic	
	Monotonic Torsion	190
	8.2.3 Elastic-Plastic Torsion with Work-hardening	190
8.3	Residual Stresses in Plastically Twisted Shafts	190
	8.3.1 Circular Shafts	190
	8.3.2 The Equilateral Triangle	192
	8.3.3 Using the Sand Heap and Membrane Analogies	193
8.4	The Elastic Shortening of Twisted Bars	195
8.5	The Plastic-Torsion of I-Sections with Warping Restraint References.	197 198
	CHAPTER 9 ELASTIC-PLASTIC PROBLEMS WITH SPHERICAL OR CYLINDRICAL SYMMETRY	
9.1	Introduction	201
9.2	Thick Hollow Spheres	202
	9.2.1 Elastic Stress Distribution: Steady State Temperature	202
	Gradient Only	202
	9.2.2 Elastic Stress Distribution: Internal Pressure, p, Only 9.2.3 Elastic Stress Distribution: Internal Pressure and a	204
	Steady State Temperature Gradient: Onset of Yielding	204
	9.2.4 Partly Plastic Shell: Internal Pressure Only	209
	9.2.5 Partly Plastic Shell: Temperature Gradient Only	210
	9.2.6 Partly Plastic Shell: Steady State Radial Temperature Gradient and an Internal or External Pressure	213
	9.2.7 The Influence of Displacements: Internal Pressure Only	214
	9.2.8 Expanding an Infinitely Small Cavity by Internal Pressure	
	9.2.9 The Work-Hardening Material	216

	9.2.10 The Metallic Spherical Shell: Other References	218
	9.2.11 Stress in a Sphere Due to a Uniform Heat Source, Q per Unit Volume	218
0 7		
9.3	Thick Circular Cylinders: Plane Strain	219
	9.3.1 Elastic Stress Distribution: General Equations	219
	9.3.2 Elastic Stress Distribution: Any Steady State Tempera- ture Distribution	221
	9.3.3 Elastic Stress Distribution: Steady State Heat Flow: Constant Temperature Difference between the Cylinder Walls Only	222
	9.3.4 Elastic Stress Distribution: Internal Pressure Only	222
	9.3.5 Elastic Stress Distribution: Internal Pressure Only 9.3.5 Elastic Stress Distribution: Steady State Temperature	222
	Gradient and Internal Pressure	223
	9.3.6 Brittle Failure	223
	9.3.7 Elastic-Plastic Tube: Internal Pressure Only	223
	9.3.8 Onset of Ductile Yielding: Internal Pressure and Temperature Gradient	225
	9.3.9 Determination of the Pressure-Expansion Curve in a	
	Thick-walled Tube which is closed at its ends	225
	9.3.10 Elastic Thermal Shock	228
	9.3.11 Special References	228
9.4	Compound Circular Cylinders and Spherical Shells	229
	9.4.1 The Compound Cylinder Subjected to Internal Pressure	
	Only	229
	9.4.2 Spherical Shells	233
9.5	Rings Subject to a Steady State Radial Temperature Gradient	
	Only	233
9.6	Rotating Discs	234
	9.6.1 Elastic Analysis	234
	9.6.2 Elastic–Plastic Analysis	236
9.7	Elastic–Plastic Analysis of a Rotating Cylinder	238
	References	239

CHAPTER 10 PLASTIC INSTABILITY

10.1	General Considerations of the Buckling of an Ideal Column	243
10.2	The Double-modulus Formula	246
10.3	The Tangent-modulus Formula	248
10.4	A Comparison Between the two Solutions for the Plastic	
	Buckling of a Column with a Rectangular Cross-section	248
10.5	General Considerations of Plastic Instability in Tension	249
10.6	Plastic Instability of a Closed-ended Thin-walled Pipe or	
	Cylinder Subjected to Internal Pressure	252
10.7	Plastic Instability of a Spherical Shell Subjected to Internal	
	Pressure	256
10.8	Plastic Instability of a Thin-walled Pipe or Cylinder Subjected	
	to an Internal Pressure and Independent Axial Load	257

.

xiii

10.9 10.10	Instability of a Circular Metal Diaphragm The Strength of Thin-walled Shells and Circular Diaphragms	259
10.10	subjected to Hydrostatic Pressure	264
	10.10.1 Thin-walled Pipe or Cylinder	264
	10.10.2 Spherical Shell	266
	10.10.3 Circular Diaphragm	266
10.11	Empirical Equations to represent the Stress-Strain Curve	267
10.11		270
10.12	10.12.1 Disc of Uniform Strength	270
	10.12.2 Disc of Uniform Thickness	276
	References	270
	Kelefences	270
	CHAPTER 11 MECHANICS OF METAL FORMING I	
11.1	Introduction	281
11.2	The Sinking of a Thin-walled Tube: General Considerations	281
11.3	Frictionless Tube-sinking	285
11.4	Tube-sinking with Wall Friction	286
11.5	Comparison of Theoretical and Experimental Stresses in	
11.0	Tube-sinking	288
11.6	The Detection and Measurement of Residual Stresses in	200
11.0	Cold-drawn Tubes	290
11.7	Deep-drawing of a Circular Blank	292
11.7	11.7.1 General Considerations	292
	11.7.2 Pure Radial Drawing	301
11.8	Ironing	306
11.0	The Re-drawing of Cups	307
11.9	The Re-drawing of Cups	507

11.8	froming
11.9	The Re-drawing of Cups
11.10	Flange Wrinkling in Deep-drawing
11.11	Blanking
11.12	Wire-drawing
	11.12.1 Theories and Experiment
	11.12.2 Redundant Strain and Redundant Work Factors in
	Drawn Strain-hardening Materials
	11.12.3 The Maximum Reduction in Drawing: A Simple
	Analysis
11.13	Extrusion: General Considerations
11.14	Determination of Extrusion Pressure
11.15	Rolling

328

329 330 334

11.15	Rolling	338
	11.15.1 Cold-rolling of Strip	338
	11.15.2 Rolling Thin Hard Strip	346
	11.15.3 Ring Rolling	346
	11.15.4 Asymmetrical Rolling	347
	11.15.5 The Pendulum Mill	348
	11.15.6 Hot-rolling of Strip	348
	11.15.7 Section-rolling, Transverse Rolling, V-Groove Forming	
	and Spread	349
	11.15.8 Seamless Tube Making	349
11.16	Swaging a Cylindrical Rod	350

xiv

11.17 11.18 11.19	The Simple Upsetting or Compressing of a Cylinder The Compression of Non-circular Prismatic Blocks Some Relationships between Engineering Strain Rate, Force, Time and Strain, in a Simple Upsetting Operation which takes	350 356
11.00	Place under a Drop Hammer	358
11.20	Superplasticity 11.20.1 Transformation Plasticity	367 368
	11.20.2 Micrograin Plasticity	368
	References	370
	CHAPTER 12 THE SLIP-LINE FIELD: THEORY AND EXAMPLES OF PLANE PLASTIC STRAIN	
12.1	General Remarks	381
12.2	The Stress Equations	383
12.3	The Velocity Equations	387
12.4	A Simple Slip-line Field for Extrusion through a Friction- less Wedge-shaped Die of Semi-angle α , of Reduction	200
12.5	$r = 2 \sin \alpha / (1 + 2 \sin \alpha)$ The Compression of a Block between Rough Rigid Parallel	389
12.5	Platens, the Platen Width Exceeding the Material Thickness	392
12.6	The Centred-fan Field	401
12.7	Examples Using the Centred-fan Field	402
	12.7.1 Extrusion through a Square Die over a Smooth Container Wall; $r > 0.5$	402
	12.7.2 Extrusion through a Smooth Wedge-shaped Die of	
	Semi-angle α when $r \ge 2 \sin \alpha/(1 + 2 \sin \alpha)$	403
	12.7.3 Extrusion through a Smooth Wedge-shaped Die of Serie and a wybere $n \leq 2 \sin n/(1 + 2 \sin n)$	403
	Semi-angle α where $r \leq 2 \sin \alpha/(1 + 2 \sin \alpha)$ 12.7.4 Simultaneous Extrusion through Two Orifices in a	403
	Square Die	406
	12.7.5 An Extrusion Involving Rotation	407
12.8	Stubby Cantilevers and Beams Carrying a Concentrated	
	Load	408
12.9	Concluding Note	412
	References	414

Chapter 13 Load Bounding: Introduction and Application to Plane Strain Deformation Problems

13.1	Introduction	415
	13.1.1 The Limit Theorems	416
13.2	The Lower Bound Theorem	416
13.3	The Upper Bound Theorem	418
13.4	The Upper Bound Theorem in Plane Strain: Elementary	
	Justification	419
13.5	Examples of the Use of the Upper Bound Theorem	421
	13.5.1 Bending of a Notched Bar	422

•

	13.5.2 Simple Indentation	423
	+	424
	*	426
	13.5.5 Extrusion through Unsymmetrical Wedge-shaped Dies	429
		431
	e .	434
	13.5.8 Sideways Extrusion from a Smooth Container	434
	13.5.9 Simultaneous Forward and Backward Extrusion of	
	Sheets of Equal Thickness	435
		436
13.6	Friction	438
13.7		439
13.8		439
13.9	Rolling	443
13.10	Temperature Distribution in Swiftly Worked Metals	445
13.11	· ·	447
13.12		449
13.13	Examples of the Application of the Lower Bound Theorem	
	Using Stress Discontinuity Patterns	451
	13.13.1 The Mohr Circle in Plane Strain: The Pole of the Mohr	
	Circle	451
	13.13.2 Stress Discontinuities, or Jumps, in Plane Strain	452
	13.13.3 The Notched Bar in Bending	453
	13.13.4 The Tapering Cantilever Under Shear Loading	454
	13.13.5 Sheet Drawing and Sheet Extrusion for Frictionless	
		456
		458
		459
		461
13.14	<u>.</u>	461
13.15	Upper Bounds for Anisotropic Metals	463
	References	464
	CHAPTER 14 MECHANICS OF METAL FORMING II	
14.1 Ir	itroduction .	467
14.2		467
		467
		469
		473
	14.2.4 Remarks on the Comparison Between Theoretical and	
	Experimental Results	474
		475
	14.2.6 Discontinuous Machining	477
	14.2.7 Oblique Machining	478
	14.2.8 Machining Using a Restricted Contact Tool	478

14.2.8 Machining Using a Restricted Contact Tool47814.2.9 Turning and Boring: Some Simple Upper Bounds48914.3 Indenting with Straight-sided Dies494

xvi

References

14.4 14.5 14.6 14.7 14.8 14.9 14.10	Indenting and Forging with a Flat Punch Opposed Indenters: Forging and Cutting Slip-Line Fields for Hot- and Cold-rolling Strip and Bar Drawing through a Perfect Die Extrusion through Bi-wedge Shaped and Curved Dies Rotating Dies and Elements Plastic Deformation of Metals of Different Yield Strengths References	497 503 504 505 508 510 513 514
	Chapter 15 Load Bounding Applied to the Plastic Bending of Plates	
	PLASTIC DENDING OF PLATES	
15.1	Introduction	520
15.2	An Annular Plate Clamped at its Outer Edge	521
15.3	Plate Position Fixed (Zero Fixing Moment) at its Outer	522
15.4	Periphery Plate Perfectly Clamped along its Inner Boundary	522
15.4	The Dynamic, or Inertia Loading of an Annular Plate	525
15.5	Perfectly Clamped along its Inner Boundary	524
15.6	Regular Polygonal Plates	525
15.7	Rectangular Plate: Uniform Loading	526
15.8	The Position-fixed Rectangular Plate Carrying a Concentrated	520
10.0	Load	528
15.9	A Plate Shape which is an Equilateral Triangle	530
	15.9.1 The Concentrated Load	530
	15.9.2 The Uniformly Distributed Load	532
15.10	Simply Supported Plates	532
15.11	A Square Plate Supported only at its Corners	534
15.12	A Position-fixed Rectangular Plate, Unsymmetrically Loaded	
	by a Concentrated Load	535
15.13	Local Collapse in a Triangular Plate	538
15.14	A Plate Twisting Analogy	540
15.15	The Elastic-Plastic Bending of Circular Plates by Transverse	<i></i>
	Pressure	541

CHAPTER 16 LOAD BOUNDING APPLIED TO AXISYMMETRIC INDENTATION AND RELATED PROBLEMS

16.1	Introduction	544
16.2	Basic Equations	544
16.3	Simple Heading Operations with Frictionless Tools	545
	16.3.1 Relatively Narrow Bands: First Mode of Deformation	545
	16.3.2 Wide Bands: Second Mode of Deformation	547
	16.3.3 A Third Mode of Deformation for a Very Deep Band	547
16.4	Three-dimensional Punch Indentation Problem	548
	16.4.1 Lower Bound for a Rectangular Punch	548
	16.4.2 Upper Bound for a Rectangular Punch	550

.

543

	16.4.3 Indentation with a Pyramid Indenter	550
	16.4.4 Comment	551
16.5	An Upper Bound for the Load to Compress Square Discs	
	between Rough, Parallel, Rigid, Overhanging Dies	551
	16.5.1 Simple, Homogeneous Velocity Field	551
	16.5.2 Velocity Field which Allows Bulging at Edges of Block	553
16.6	The Indentation of a Thin Cylindrical Slab by a Pair of Rough	
	Rigid Punches	554
	16.6.1 First Mode of Deformation: Disc Wholly Plastic	555
	16.6.2 Second Mode of Deformation: Outer Annulus of Disc	
	Remaining Rigid	556
16.7	Velocity Fields for Axisymmetric Extrusion, Rolling and	
	Indentation	557
16.8	Hill's General Method	559
10.0	References	559
	Kerences	557
PROBLE	TMS	561
INOBLI	0112	501
Soluti	Solutions to Problems	
Author Index		635
Subject Index		643

xviii