Contents

Preface xvi

1 Introduction 1

2 Methods of Density Estimation 5

2.1 Introduction 5

2.2 Nonparametric Density Estimation 7

2.2.1 A "Local" Histogram Approach 7

2.2.2 A Formal Derivation of \(\hat{f}_1(x) \) 9

2.2.3 Rosenblatt–Parzen Kernel Estimator 9

2.2.4 The Nearest Neighborhood Estimator 11

2.2.5 Variable Window-Width Estimators 12

2.2.6 Series Estimators 13

2.2.7 Penalized Likelihood Estimators 15

2.2.8 The Local Log-Likelihood Estimators 17

2.2.9 Summary 19

2.3 Estimation of Derivatives of a Density 19

2.4 Finite-Sample Properties of the Kernel Estimator 20

2.4.1 The Exact Bias and Variance of the Estimator \(\hat{f} \) 21

2.4.2 Approximations to the Bias and Variance and Choices of \(h \) and \(K \) 23

2.4.3 Reduction of Bias 29

2.5 Asymptotic Properties of the Kernel Density Estimator \(\hat{f} \) with Independent Observations 32

2.5.1 Asymptotic Unbiasedness 33

2.5.2 Consistency 34

2.5.3 Asymptotic Normality 39

2.5.4 Small-Sample Confidence Intervals 42

2.6 Sampling Properties of the Kernel Density Estimator with Dependent Observations 43
3 Conditional Moment Estimation

3.1 Introduction

3.2 Estimating Conditional Moments by Kernel Methods

3.2.1 Parametric Estimation

3.2.2 Nonparametric Estimation: A "Local" Regression Approach

3.2.3 Kernel-Based Estimation: A Formal Derivation

3.2.4 A General Nonparametric Estimator of $m(x)$

3.2.5 Unifying Nonparametric Estimators

3.2.6 Estimation of Higher Order Conditional Moments

3.3 Finite-Sample Properties

3.3.1 Approximate Results: Stochastic x

3.3.2 The Local Linear Regression Estimator

3.3.3 Combining Parametric and Nonparametric Estimators

3.4 Asymptotic Properties

3.4.1 Asymptotic Properties of the Kernel Estimator with Independent Observations

3.4.2 Asymptotic Properties of the Kernel Estimator with Dependent Observations

3.5 Bibliographical Summary (Asymptotic Results)
3.6 Implementing the Kernel Estimator 118
 3.6.1 Choice of Window Width 118
3.7 Robust Nonparametric Estimation of Moments 122
3.8 Estimating Conditional Moments by Series Methods 123
3.9 Asymptotic Properties of Series Estimators with Independent Observations 126
3.10 Asymptotic Properties of Series Estimators with Dependent Observations 133
3.11 Implementing the Estimator 133
3.12 Imposing Structure on the Conditional Moments 137
 3.12.1 Generalized Additive Models 137
 3.12.2 Projection Pursuit Regression 139
 3.12.3 Neural Networks 140
3.13 Measuring the Affinity of Parametric and Nonparametric Models 141
3.14 Examples 150
 3.14.1 A Model of Strike Duration 150
 3.14.2 Earnings–Age Profiles 152
 3.14.3 Review of Applied Work on Nonparametric Regression 157
4 Nonparametric Estimation of Derivatives 160
 4.1 Introduction 160
 4.2 The Model and Partial Derivative Formulae 161
 4.3 Estimation 164
 4.3.1 Estimation of Partial Derivatives by Kernel Methods 164
 4.3.2 Estimation of Partial Derivatives by Series Methods 167
 4.3.3 Estimation of Average Derivatives 167
 4.3.4 Local Linear Derivative Estimators 170
 4.3.5 Pointwise Versus Average Derivatives 172
 4.4 Restricted Estimation and Hypothesis Testing 173
 4.4.1 Imposing Linear Equality Restriction on Partial Derivatives 174
 4.4.2 Imposing Linear Inequality Restrictions 175
 4.4.3 Hypothesis Testing 176
 4.5 Asymptotic Properties of Partial Derivative Estimators 177
 4.5.1 Asymptotic Properties of Kernel-Based Estimators 178
 4.5.2 Series-Based Estimators 182
 4.5.3 Higher Order Derivatives 182
 4.5.4 Local Linear Estimators 183
4.6 Asymptotic Properties of Kernel-Based Average Derivative Estimators 184
4.7 Implementing the Derivative Estimators 189
4.8 Illustrative Examples 190
 4.8.1 A Monte Carlo Experiment with a Production Function 190
 4.8.2 Earnings–Age Relationship 192
 4.8.3 Review of Applied Work 194

5 Semiparametric Estimation of Single-Equation Models 196
5.1 Introduction 196
5.2 Semiparametric Estimation of the Linear Part of a Regression Model 198
 5.2.1 General Results 198
 5.2.2 Diagnostic Tests after Nonparametric Regression 208
 5.2.3 Semiparametric Estimation of Some Macro Models 210
 5.2.4 The Asymptotic Covariance Matrix of SP Estimators without Asymptotic Independence 212
5.3 Efficient Estimation of Semiparametric Models in the Presence of Heteroskedasticity of Unknown Form 214
5.4 Conditions for Adaptive Estimation 217
5.5 Efficient Estimation of Regression Parameters with Unknown Error Density 225
 5.5.1 Efficient Estimation by Likelihood Approximation 225
 5.5.2 Efficient Estimation by Kernel-Based Score Approximation 227
 5.5.3 Efficient Estimation by Moment-Based Score Approximation 230
5.6 Estimation of Scale Parameters 234
5.7 Optimal Diagnostic Tests in Linear Models 234
5.8 Adaptive Estimation with Dependent Observations 235
5.9 \(M\)-Estimators 237
 5.9.1 Estimation 237
 5.9.2 Diagnostic Tests with \(M\)-Estimators 242
 5.9.3 Sequential \(M\)-Estimators 243
5.10 The Semiparametric Efficiency Bound for Moment-Based Estimators 245
 5.10.1 Approximating the SP Efficiency Bound by a Conditional Moment Estimator 246
5.11 Applications 248
 5.11.1 Semiparametric Estimation of a Heteroskedastic Model 248
5.11.2 Adaptive Estimation of a Model of House Prices 250
5.11.3 Review of Other Applications 251

6 Semiparametric and Nonparametric Estimation of Simultaneous Equation Models 254
6.1 Introduction 254
6.2 Single-Equation Estimators 255
 6.2.1 Parametric Estimation 256
 6.2.2 Rilstone’s Semiparametric Two-Stage Least Squares Estimator 258
6.3 Systems Estimation 260
 6.3.1 A Parametric Estimator 260
 6.3.2 The SP3SLS Estimator 261
 6.3.3 Newey’s Estimator 262
 6.3.4 Newey’s Efficient Distribution-Free Estimators 264
6.4 Finite-Sample Properties 267
6.5 Nonparametric Estimation 269
 6.5.1 Identification 269
 6.5.2 Nonparametric Two-Stage Least Squares (2SLS) Estimation 270

7 Semiparametric Estimation of Discrete Choice Models 272
7.1 Introduction 272
7.2 Parametric Estimation of Binary Discrete Choice Models 273
7.3 Semiparametric Efficiency Bounds for Binary Discrete Choice Models 275
7.4 Semiparametric Estimation of Binary Discrete Choice Models 279
 7.4.1 Ichimura’s Estimator 280
 7.4.2 Klein and Spady’s Estimator 283
 7.4.3 The SNP Maximum Likelihood Estimator 285
 7.4.4 Local Maximum Likelihood Estimation 286
7.5 Alternative Consistent SP Estimators 286
 7.5.1 Manski’s Maximum Score Estimator 286
 7.5.2 Horowitz’s Smoothed Maximum Score Estimator 287
 7.5.3 Han’s Maximum Rank Correlation Estimator 291
 7.5.4 Cosslett’s Approximate MLE 292
 7.5.5 An Iterative Least Squares Estimator 293
 7.5.6 Derivative-Based Estimators 294
 7.5.7 Models with Discrete Explanatory Variables 295
7.6 Multinomial Discrete Choice Models 296
Contents

7.7 Some Specification Tests for Discrete Choice Models 297
7.8 Applications 299

8 Semiparametric Estimation of Selectivity Models 300
8.1 Introduction 300
8.2 Some Parametric Estimators 301
8.3 Some Sequential Semiparametric Estimators 304
 8.3.1 Cosslett’s Dummy Variable Method 306
 8.3.2 Powell’s Kernel Estimator 306
 8.3.3 Newey’s Series Estimator 308
 8.3.4 Newey’s GMM Estimator 310
8.4 Maximum Likelihood–Type Estimators 310
 8.4.1 Gallant and Nychka’s Estimator 310
 8.4.2 Newey’s Estimator 311
8.5 Estimation of the Intercept in Selection Models 315
8.6 Applications of the Estimators 315
8.7 Conclusions 316

9 Semiparametric Estimation of Censored Regression Models 317
9.1 Introduction 317
9.2 Some Parametric Estimators 319
9.3 Semiparametric Efficiency Bounds for the Censored Regression Model 322
9.4 The Kaplan–Meier Estimator of the Distribution Function of a Censored Random Variable 324
9.5 Semiparametric Density-Based Estimators 326
 9.5.1 The Semiparametric Generalized Least Squares Estimator (SGLS) 327
 9.5.2 Estimators Replacing Part of the Sample 328
 9.5.3 Maximum Likelihood Type Estimators 329
9.6 Semiparametric Nondensity-Based Estimators 329
 9.6.1 Powell’s Censored Least Absolute Deviation (CLAD) Estimator 330
 9.6.2 Powell’s (1986a) Censored Quantile Estimators 333
 9.6.3 Powell’s Symmetrically Censored Least Squares Estimators 333
 9.6.4 Newey’s Efficient Estimator under Conditional Symmetry 336
9.7 Comparative Studies of the Estimators 337

10 Retrospect and Prospect 339
A Statistical Methods 342
 A.1 Probability Concepts 342
 A.1.1 Random Variable and Distribution Function 345
 A.1.2 Conditional Distribution and Independence 347
 A.1.3 Borel Measurable Functions 348
 A.1.4 Inequalities Involving Expectations 350
 A.1.5 Characteristic Function (c.f.) 351
 A.2 Results on Convergence 352
 A.2.1 Weak and Strong Convergence of Random Variables 352
 A.2.2 Laws of Large Numbers 354
 A.2.3 Convergence of Distribution Functions 355
 A.2.4 Central Limit Theorems 357
 A.2.5 Further Results on the Law of Large Numbers
 and Convergence in Moments and Distributions 360
 A.2.6 Convergence in Moments 361
 A.3 Some Probability Inequalities 365
 A.4 Order of Magnitudes (Small \(o \) and Large \(O \)) 368
 A.5 Asymptotic Theory for Dependent Observations 370
 A.5.1 Ergodicity 371
 A.5.2 Mixing Sequences 372
 A.5.3 Near-Epoch Dependent Sequences 376
 A.5.4 Martingale Differences and Mixingales 377
 A.5.5 Rosenblatt’s (1970) Measure of Dependence \(\beta_n \) 379
 A.5.6 Stochastic Equicontinuity 379

References 383
Index 419