Yuri P. Raizer

Gas Discharge Physics

With 209 Figures

Springer-Verlag
Berlin Heidelberg New York London Paris
Tokyo Hong Kong Barcelona Budapest

Contents

I.	intro	dauction		
	1.1	What Is the Subject of Gas Discharge Physics]	
	1.2	Typical Discharges in a Constant Electric Field	1	
	1.3	Classification of Discharges	3	
	1.4	Brief History of Electric Discharge Research	2	
	1.5	Organization of the Book. Bibliography	6	
2.	, S			
	in C	onstant Fields	8	
	2.1	Drift of Electrons in a Weakly Ionized Gas	8	
	2.2	Conduction of Ionized Gas	13	
	2.3	Electron Energy	14	
	2.4	Diffusion of Electrons	20	
	2.5	Ions	23	
	2.6	Ambipolar Diffusion	28	
	2.7	Electric Current in Plasma in the Presence		
		of Longitudinal Gradients of Charge Density	30	
	2.8	Hydrodynamic Description of Electrons	33	
3.	Interaction of Electrons in an Ionized Gas			
•		Oscillating Electric Field and Electromagnetic Waves	35	
	3.1	The Motion of Electrons in Oscillating Fields	35	
	3.2	Electron Energy	37	
	3.3	Basic Equations of Electrodynamics of Continuous Media	41	
	3.4	High-Frequency Conductivity	4.	
	3.4	and Dielectric Permittivity of Plasma	43	
	3.5		45	
		Propagation of Electromagnetic Waves in Plasmas	4.	
	3.6	Total Reflection of Electromagnetic Waves	40	
		from Plasma and Plasma Oscillations	49	
4.	Production and Decay of Charged Particles			
	4.1	Electron Impact Ionization in a Constant Field	52	
	4.2	Other Ionization Mechanisms	57	
	4.3	Bulk Recombination	60	

	4.4	Formation and Decay of Negative Ions	63	
	4.5	Diffusional Loss of Charges	67	
	4.6	Electron Emission from Solids	68	
	4.7	Multiplication of Charges in a Gas via Secondary Emission .	72	
5.	Kine	etic Equation for Electrons in a Weakly Ionized Gas		
		ed in an Electric Field	76	
	5.1	Description of Electron Processes		
		in Terms of the Velocity Distribution Function	76	
	5.2	Formulation of the Kinetic Equation	77	
	5.3	Approximation for the Angular Dependence		
		of the Distribution Function	82	
	5.4	Equation of the Electron Energy Spectrum	85	
	5.5	Validity Criteria for the Spectrum Equation	90	
	5.6	Comparison of Some Conclusions Implied		
		by the Kinetic Equation with the Result of Elementary Theory	93	
	5.7	Stationary Spectrum of Electrons		
		in a Field in the Case of only Elastic Losses	95	
	5.8	Numerical Results for Nitrogen and Air	98	
	5.9	Spatially Nonuniform Fields of Arbitrary Strength	101	
6.	Electric Probes			
•	6.1	Introduction. Electric Circuit	103 103	
	6.2	Current-Voltage Characteristic of a Single Probe	104	
	6.3	Theoretical Foundations of Electronic Current Diagnostics	10	
	0.5	of Rarefied Plasmas	106	
	6.4	Procedure for Measuring the Distribution Function	111	
	6.5	Ionic Current to a Probe in Rarefied Plasma	113	
	6.6	Vacuum Diode Current and Space-Charge Layer	11.	
	0.0	Close to a Charged Body	115	
	6.7	Double Probe	119	
	6.8	Probe in a High-Pressure Plasma	123	
	0.0	Trobe in a riigh-riessule riasma	12.	
7.				
		arious Frequency Ranges	128	
	7.1	Essential Characteristics of the Phenomenon	128	
	7.2	Breakdown and Triggering of Self-Sustained Discharge		
		in a Constant Homogeneous Field at Moderately Large Product		
		of Pressure and Discharge Gap Width	130	
	7.3	Breakdown in Microwave Fields and Interpretation		
		of Experimental Data Using the Elementary Theory	138	
	7.4	Calculation of Ionization Frequencies		
		and Breakdown Thresholds Using the Kinetic Equation	144	

	7.5	Optical Breakdown	151
	7.6	Methods of Exciting an RF Field in a Discharge Volume	160
	7.7	Breakdown in RF and Low-Frequency Ranges	161
0	C4 - L I	Class Pisalassas	1.77
8.		e Glow Discharge	167
	8.1	General Structure and Observable Features	167
	8.2	Current-Voltage Characteristic of Discharge	
		Between Electrodes	172
	8.3	Dark Discharge and the Role Played by Space Charge	
		in the Formation of the Cathode Layer	175
	8.4	Cathode Layer	178
	8.5	Transition Region Between the Cathode Layer	
		and the Homogeneous Positive Column	190
	8.6	Positive Column	193
	8.7	Heating of the Gas and Its Effect	
		on the Current-Voltage Characteristic	199
	8.8	Electronegative Gas Plasma	203
	8.9	Discharge in Fast Gas Flow	209
	8.10	Anode Layer	211
9.	Clove	Discharge Instabilities and Their Consequences	214
9.	9.1	-	214
	9.1	Causes and Consequences of Instabilities	217
		Quasisteady Parameters	217
	9.3	Field and Electron Temperature Perturbations	226
		in the Case of Quasisteady-State T_e	220
	9.4	Thermal Instability	222
	9.5	Attachment Instability	226
	9.6	Some Other Frequently Encountered Destabilizing Mechanisms	228
	9.7	Striations	230
	9.8	Contraction of the Positive Column	239
10.	Arc I	Discharge	245
	10.1	Definition and Characteristic Features of Arc Discharge	245
	10.2	Arc Types	246
	10.3	Arc Initiation	248
	10.4	Carbon Arc in Free Air	249
	10.5	Hot Cathode Arc: Processes near the Cathode	251
	10.6	Cathode Spots and Vacuum Arc	259
	10.7	Anode Region	266
	10.7	Low-Pressure Arc with Externally Heated Cathode	268
	10.8	Positive Column of High-Pressure Arc (Experimental Data)	271
		Plasma Temperature and $V - i$ Characteristic	211
	10.10		275
	10 11	of High-Pressure Arc Columns	275
	10.11	The Gap Between Electron and Gas Temperatures	205
		in "Equilibrium" Plasma	285

11.		inment and Production of Equilibrium Plasma	
	by Fi	elds in Various Frequency Ranges	288
	11.1	Introduction. Energy Balance in Plasma	288
	11.2	Arc Column in a Constant Field	290
	11.3	Inductively Coupled Radio-Frequency Discharge	291
	11.4	Discharge in Microwave Fields	299
	11.5	Continuous Optical Discharges	306
	11.6	Plasmatrons: Generators of Dense Low-Temperature Plasma .	315
12.	Spark	and Corona Discharges	324
	12.1	General Concepts	324
	12.2	Individual Electron Avalanche	328
	12.3	Concept of Streamers	334
	12.4	Breakdown and Streamers in Electronegative Gases (Air)	
		in Moderately Wide Gaps with a Uniform Field	338
	12.5	Spark Channel	343
	12.6	Corona Discharge	345
	12.7	Models of Streamer Propagation	352
	12.8	Breakdown in Long Air Gaps	
		with Strongly Nonuniform Fields (Experimental Data)	359
	12.9	Leader Mechanism of Breakdown of Long Gaps	363
		Return Wave (Return Stroke)	368
		Lightning	370
	12.12	Negative Stepped Leader	375
13.	Capa	citively Coupled Radio-Frequency Discharge	378
	13.1	Drift Oscillations of Electron Gas	378
	13.2	Idealized Model of the Passage of High-Frequency Current	
		Through a Long Plane Gap at Elevated Pressures	381
	13.3	V-i Characteristic of Homogeneous Positive Columns	385
	13.4	Two Forms of CCRF Discharge Realization	
		and Constant Positive Potential of Space: Experiment	387
	13.5	Electrical Processes in a Nonconducting Electrode Layer	
		and the Mechanism of Closing the Circuit Current	396
	13.6	Constant Positive Potential	
		of the Weak-Current Discharge Plasma	400
	13.7	High-Current Mode	403
	13.8	The Structure of a Medium-Pressure Discharge:	
		Results of Numerical Modeling	408
	13.9	Normal Current Density in Weak-Current Mode	
		and Limits on the Existence of this Mode	112

14. Discharges in High-Power CW CO ₂ Lasers	415
14.1 Principles of Operation of Electric-Discharge CO ₂ Lasers	415
14.2 Two Methods of Heat Removal from Lasers	417
14.3 Methods of Suppressing Instabilities	421
14.4 Organization of Large-Volume Discharges	
Involving Gas Pumping	425
Appendix	433
References	439
Subject Index	447