ELECTRICAL MACHINES, DRIVES, AND POWER SYSTEMS SIXTH EDITION

THEODORE WILDI

PROFESSOR EMERITUS, LAVAL UNIVERSITY

BRIEF CONTENTS

PART 1. FUNDAMENTALS

- 1 UNITS, 3
- 2 FUNDAMENTALS OF ELECTRICITY, MAGNETISM, AND CIRCUITS, 15
- 3 FUNDAMENTALS OF MECHANICS AND HEAT, 50

PART 2. ELECTRICAL MACHINES AND TRANSFORMERS

- 4 DIRECT-CURRENT GENERATORS, 71
- 5 DIRECT-CURRENT MOTORS, 96
- 6 EFFICIENCY AND HEATING OF ELECTRICAL MACHINES, 120
- 7 ACTIVE, REACTIVE, AND APPARENT POWER, 134

- 8-THREE-PHASE CIRCUITS, 158
- 9 THE IDEAL TRANSFORMER, 183
- 10 PRACTICAL TRANSFORMERS, 197
- 11 SPECIAL TRANSFORMERS, 225
- 12 THREE-PHASE TRANSFORMERS, 243
- 13 THREE-PHASE INDUCTION MACHINES, 263
- 14 SELECTION AND APPLICATION OF THREE-PHASE INDUCTION MACHINES, 307
- 15 EQUIVALENT CIRCUIT OF THE INDUCTION MOTOR, 330
- 16 SYNCHRONOUS GENERATORS, 343
- 17 SYNCHRONOUS MOTORS, 377

x BRIEF CONTENTS

18 SINGLE-PHASE MOTORS, 399

19 STEPPER MOTORS, 425

PART 3. ELECTRICAL AND ELECTRONIC DRIVES

- 20 BASICS OF INDUSTRIAL MOTOR CONTROL, 447
- 21 FUNDAMENTAL ELEMENTS OF POWER ELECTRONICS, 480
- 22 ELECTRONIC CONTROL OF DIRECT-CURRENT MOTORS, 555
- 23 ELECTRONIC CONTROL OF ALTERNATING-CURRENT MOTORS, 589

PART 4. ELECTRIC UTILITY POWER SYSTEMS

- 24 GENERATION OF ELECTRICAL ENERGY, 665
- 25 TRANSMISSION OF ELECTRICAL ENERGY, 706
- 26 DISTRIBUTION OF ELECTRICAL ENERGY, 740

- 27 THE COST OF ELECTRICITY, 771
- 28 DIRECT-CURRENT TRANSMISSION, 788
- 29 TRANSMISSION AND DISTRIBUTION SOLID-STATE CONTROLLERS, 816
- 30 HARMONICS, 847
- 31 PROGRAMMABLE LOGIC CONTROLLERS, 879

References, 907

Appendixes, 913 Conversion Charts, 913

Properties of Insulating Materials, 917

> Properties of Conductors and Insulators, 918

Properties of Round Copper Conductors, 919

έ,

Answers to Problems, 921

Answers to Industrial Application Problems, 925

Index, 927

CONTENTS

PART 1. FUNDAMENTALS

- 1 UNITS, 3
 - 1.0 Introduction, 3
 - 1.1 Systems of units, 3
 - 1.2 Getting used to SI, 4
 - 1.3 Base and derived units of the SI, 4
 - 1.4 Definitions of base units, 5
 - 1.5 Definitions of derived units, 5
 - 1.6 Multiples and submultiples of SI units, 7
 - 1.7 Commonly used units, 7
 - 1.8 Conversion charts and their use, 8
 - 1.9 The per-unit system of measurement, 9
 - 1.10 Per-unit system with one base, 10

1.11 Per-unit system with two bases, 11 Questions and Problems, 12

2 FUNDAMENTALS OF ELECTRICITY, MAGNETISM, AND CIRCUITS, 15

- 2.0 Introduction, 15
- 2.1 Conventional and electron current flow, 15

- 2.2 Distinction between sources and loads, 16
 - 2.3 Sign notation, 17
 - 2.4 Double-subscript notation for voltages, 17
 - 2.5 Sign notation for voltages, 17
 - 2.6 Graph of an alternating voltage, 18°
 - 2.7 Positive and negative currents, 19
 - 2.8 Sinusoidal voltage, 19
 - 2.9 Converting cosine functions into sine functions, 20
 - 2.10 Effective value of an ac voltage, 20
 - 2.11 Phasor representation, 21
 - 2.12 Harmonics, 23
 - 2.13 Energy in an inductor, 25
 - 2.14 Energy in a capacitor, 25
 - 2.15 Some useful equations, 26
 - 2.16 Magnetic field intensity *H* and flux density *B*, 27
 - 2.17 *B-H* curve of vacuum, 27
 - 2.18 B-H curve of a magnetic material, 27
 - 2.19 Determining the relative permeability, 28
 - 2.20 Faraday's law of electromagnetic induction, 29
 - 2.21 Voltage induced in a conductor, 30

- 2.22 Lorentz force on a conductor, 31
- 2.23 Direction of the force acting on a straight conductor, 31
- 2.24 Residual flux density and coercive force, 32
- 2.25 Hysteresis loop, 33
- 2.26 Hysteresis loss, 33
- 2.27 Hysteresis losses caused by rotation, 33
- 2.28 Eddy currents, 34
- 2.29 Eddy currents in a stationary iron core, 35
- 2.30 Eddy-current losses in a revolving core, 35
- 2.31 Current in an inductor, 36

Circuits and Equations

- 2.32 Kirchhoff's voltage law, 40
- 2.33 Kirchhoff's voltage law and doublesubscript notation, 40
- 2.34 Kirchhoff's current law, 41
- 2.35 Currents, impedances, and associated voltages, 41
- 2.36 Kirchhoff's laws and ac circuits, 43
- 2.37 KVL and sign notation, 43
- 2.38 Solving ac and dc circuits with sign notation, 44
- 2.39 Circuits and hybrid notation, 45 Questions and Problems, 46

3 FUNDAMENTALS OF MECHANICS AND HEAT, 50

- 3.0 Introduction, 50
- 3.1 Force, 50
- 3.2 Torque, 51
- 3.3 Mechanical work, 51
- 3.4 Power, 52
- 3.5 Power of a motor, 52
- 3.6 Transformation of energy, 53
- 3.7 Efficiency of a machine, 53
- 3.8 Kinetic energy of linear motion, 54
- 3.9 Kinetic energy of rotation, moment of inertia, 54
- 3.10 Torque, inertia, and change in speed, 57
- 3.11 Speed of a motor/load system, 57

- 3.12 Power flow in a mechanically-coupled system, 58
- 3.13 Motor driving a load having inertia, 58
- 3.14 Electric motors driving linear motion loads, 59
- 3.15 Heat and temperature, 60
- 3.16 Temperature scales, 61
- 3.17 Heat required to raise the temperature of a body, 61
- 3.18 Transmission of heat, 62
- 3.19 Heat transfer by conduction, 62
- 3.20 Heat transfer by convection, 63
- 3.21 Calculating the losses by convection, 63
- 3.22 Heat transfer by radiation, 64
- 3.23 Calculating radiation losses, 64
- Questions and Problems, 65

PART 2. ELECTRICAL MACHINES AND TRANSFORMERS

4 DIRECT-CURRENT GENERATORS, 71

- 4.0 Introduction, 71
- 4.1 Generating an ac voltage, 71
- 4.2 Direct-current generator, 72
- 4.3 Difference between ac and dc generators, 73
- 4.4 Improving the waveshape, 73
- 4.5 Induced voltage, 75
- 4.6 Neutral zones, 76
- 4.7 Value of the induced voltage, 76
- 4.8 Generator under load: The energy conversion process, 77
- 4.9 Armature reaction, 77
- 4.10 Shifting the brushes to improve commutation, 78
- 4.11 Commutating poles, 79
- 4.12 Separately excited generator, 79
- 4.13 No-load operation and saturation curve, 80
- 4.14 Shunt generator, 80
- 4.15 Controlling the voltage of a shunt generator, 81

- 4.16 Equivalent circuit, 82
- 4.17 Separately excited generator under load, 82
- 4.18 Shunt generator under load, 83
- 4.19 Compound generator, 83
- 4.20 Differential compound generator, 84
- 4.21 Load characteristics, 84
- 4.22 Generator specifications, 84

Construction of Direct-Current

Generators

- 4.23 Field, 85
- 4.24 Armature, 86
- 4.25 Commutator and brushes, 86
- 4.26 Details of a multipole generator, 88
- 4.27 The ideal commutation process, 91
- 4.28 The practical commutation process, 92 Ouestions and Problems, 94

5 DIRECT-CURRENT MOTORS, 96

- 5.0 Introduction, 96
- 5.1 Counter-electromotive force (cemf), 96
- 5.2 Acceleration of the motor, 97
- 5.3 Mechanical power and torque, 98
- 5.4 Speed of rotation, 100
- 5.5 Armature speed control, 101
- 5.6 Field speed control, 102
- 5.7 Shunt motor under load, 103
- 5.8 Series motor, 104
- 5.9 Series motor speed control, 105
- 5.10 Applications of the series motor, 106
- 5.11 Compound motor, 106
- 5.12 Reversing the direction of rotation, 107
- 5.13 Starting a shunt motor, 108
- 5.14 Face-plate starter, 108
- 5.15 Stopping a motor, 109
- 5.16 Dynamic braking, 109
- 5.17 Plugging, 110
- 5.18 Dynamic braking and mechanical time constant, 111
- 5.19 Armature reaction, 113
- 5.20 Flux distortion due to armature reaction, 113

- 5.21 Commutating poles, 113
- 5.22 Compensating winding, 114
- 5.23 Basics of variable speed control, 114

5.24 Permanent magnet motors, 117

Questions and Problems, 118

6 EFFICIENCY AND HEATING OF ELECTRICAL MACHINES, 120

- 6.0 Introduction, 120
- 6.1 Mechanical losses, 120
- 6.2 Electrical losses, 120
- 6.3 Losses as a function of load, 123
- 6.4 Efficiency curve, 123
- 6.5 Temperature rise, 125
- 6.6 Life expectancy of electric equipment, 126
- 6.7 Thermal classification of insulators, 126
- 6.8 Maximum ambient temperature and hot-spot temperature rise, 127
- 6.9 Temperature rise by the resistance method, 129
- 6.10 Relationship between the speed and size of a machine, 130
- Questions and Problems, 131
- 7 ACTIVE, REACTIVE, AND APPARENT POWER, 134
 - 7.0 Introduction, 134
 - 7.1 Instantaneous power, 134
 - 7.2 Active power, 136
 - 7.3 Reactive power, 137
 - 7.4 Definition of a reactive load and reactive source, 138
 - 7.5 The capacitor and reactive power, 139
 - 7.6 Distinction between active and reactive power, 140
 - 7.7 Combined active and reactive loads: Apparent power, 141
 - 7.8 Relationship between P, Q, and S, 141
 - 7.9 Power factor, 143
 - 7.10 Power triangle, 144
 - 7.11 Further aspects of sources and loads, 144

- 7.12 Systems comprising several loads, 146
- 7.13 Reactive power without magnetic fields, 148
- 7.14 Solving ac circuits using the power triangle method, 148
- 7.15 Power and vector notation, 151
- 7.16 Rules on sources and loads (sign notation), 154
- 7.17 Rules on sources and loads (double subscript notation), 154

Questions and Problems, 155

8 THREE-PHASE CIRCUITS, 158

- 8.0 Introduction, 158
- 8.1 Polyphase systems, 158
- 8.2 Single-phase generator, 159
- 8.3 Power output of a single-phase generator, 160
- 8.4 Two-phase generator, 160
- 8.5 Power output of a 2-phase generator, 161
- 8.6 Three-phase generator, 162
- 8.7 Power output of a 3-phase generator, 162
- 8.8 Wye connection, 164
- 8.9 Voltage relationships, 165
- 8.10 Delta connection, 167
- 8.11 Power transmitted by a 3-phase line, 168
- 8.12 Active, reactive, and apparent power in 3-phase circuits, 169
- 8.13 Solving 3-phase circuits, 170
- 8.14 Industrial loads, 171
- 8.15 Phase sequence, 174
- 8.16 Determining the phase sequence, 175
- 8.17 Power measurement in ac circuits, 176
- 8.18 Power measurement in 3-phase, 3-wire circuits, 176
- 8.19 Power measurement in 3-phase, 4-wire circuits, 177
- 8.20 Varmeter, 177
- 8.21 A remarkable single-phase to 3-phase transformation, 178
- Questions and Problems, 180

9 THE IDEAL TRANSFORMER, 183

- 9.0 Introduction, 183
- 9.1 Voltage induced in a coil, 183
- 9.2 Applied voltage and induced voltage, 184
- 9.3 Elementary transformer, 185
- 9.4 Polarity of a transformer, 186
- 9.5 Properties of polarity marks, 186
- 9.6 Ideal transformer at no-load: Voltage ratio, 187
- 9.7 Ideal transformer under load: Current ratio, 188
- 9.8 Circuit symbol for an ideal transformer, 191
- 9.9 Impedance ratio, 191
- 9.10 Shifting impedances from secondary to primary and vice versa, 192 Questions and Problems, 195

10 PRACTICAL TRANSFORMERS, 197

- 10.0 Introduction, 197
- 10.1 Ideal transformer with an imperfect core, 197

λ,

- 10.2 Ideal transformer with loose coupling, 199
- 10.3 Primary and secondary leakage reactance, 200
- 10.4 Equivalent circuit of a practical transformer, 202
- 10.5 Construction of a power transformer, 203
- 10.6 Standard terminal markings, 204
- 10.7 Polarity tests, 204
- 10.8 Transformer taps, 205
- 10.9 Losses and transformer rating, 206
- 10.10 No-load saturation curve, 206
- 10.11 Cooling methods, 207
- 10.12 Simplifying the equivalent circuit, 209
- 10.13 Voltage regulation, 211
- 10.14 Measuring transformer impedances, 212
- 10.15 Introducing the per-unit method, 215

Ł

- 10.16 Impedance of a transformer, 216
- 10.17 Typical per-unit impedances, 216
- 10.18 Transformers in parallel, 219
- Questions and Problems, 221

11 SPECIAL TRANSFORMERS, 225

- 11.0 Introduction, 225
- 11.1 Dual-voltage distribution transformer, 225
- 11.2 Autotransformer, 226
- 11.3 Conventional transformer connected as an autotransformer, 228
- 11.4 Voltage transformers, 230
- 11.5 Current transformers, 231
- 11.6 Opening the secondary of a CT can be dangerous, 233
- 11.7 Toroidal current transformers, 234
- 11.8 Variable autotransformer, 235
- 11.9 High-impedance transformers, 236
- 11.10 Induction heating transformers, 237
- 11.11 High-frequency transformers, 238 Questions and Problems, 241

12 THREE-PHASE TRANSFORMERS, 243

- 12.0 Introduction, 243
- 12.1 Basic properties of 3-phase transformer banks, 243
- 12.2 Delta-delta connection, 244
- 12.3 Delta-wye connection, 246
- 12.4 Wye-delta connection, 247
- 12.5 Wye-wye connection, 248
- 12.6 Open-delta connection, 248
- 12.7 Three-phase transformers, 249
- 12.8 Step-up and step-down autotransformer, 251
- 12.9 Phase-shift principle, 253
- 12.10 Three-phase to 2-phase transformation, 254
- 12.11 Phase-shift transformer, 256
- 12.12 Calculations involving 3-phase transformers, 258
- 12.13 Polarity marking of 3-phase transformers, 260
- Questions and Problems, 261

13 THREE-PHASE INDUCTION MACHINES, 263

- 13.0 Introduction, 263
- 13.1 Principal components, 263
- 13.2 Principle of operation, 264
- 13.3 The rotating field, 265
- 13.4 Direction of rotation, 270
- 13.5 Number of poles—synchronous speed, 271
- 13.6 Starting characteristics of a squirrelcage motor, 273
- 13.7 Acceleration of the rotor—slip, 274
- 13.8 Motor under load, 274
- 13.9 Slip and slip speed, 274
- 13.10 Voltage and frequency induced in the rotor, 275
- 13.11 Characteristics of squirrel-cage induction motors, 276
- 13.12 Estimating the currents in an induction motor, 277
- 13.13 Active power flow, 278
- 13.14 Torque versus speed curve, 281
- 13.15 Effect of rotor resistance, 282
- 13.16 Wound-rotor motor, 284
- 13.17 Three-phase windings, 285
- 13.18 Sector motor, 288
- 13.19 Linear induction motor, 289
- 13.20 Travelling waves, 291
- 13.21 Properties of a linear induction motor, 291
- 13.22 Magnetic levitation, 293

The Doubly-Fed Induction

Machine

- 13.23 Doubly-fed wound-rotor motor (speed relationships), 295
- 13.24 Doubly-fed wound-rotor motor (power relationships at subsynchronous speed), 297
- 13.25 Doubly-fed wound-rotor motor (power relationships at supersynchronous speed), 300
- 13.26 Doubly-fed wound-rotor generator, 300

Questions and Problems, 303

14 SELECTION AND APPLICATION OF THREE-PHASE INDUCTION MACHINES, 307

- 14.0 Introduction, 307
- 14.1 Standardization and classification of induction motors, 307
- 14.2 Classification according to environment and cooling methods, 307
- 14.3 Classification according to electrical and mechanical properties, 309
- 14.4 Choice of motor speed, 311
- 14.5 Two-speed motors, 311
- 14.6 Induction motor characteristics under various load conditions, 313
- 14.7 Starting an induction motor, 316
- 14.8 Plugging an induction motor, 316
- 14.9 Braking with direct current, 317
- 14.10 Abnormal conditions, 318
- 14.11 Mechanical overload, 318
- 14.12 Line voltage changes, 318
- 14.13 Single-phasing, 318
- 14.14 Frequency variation, 319
- 14.15 Induction motor operating as a generator, 319
- 14.16 Complete torque-speed characteristic of an induction machine, 322
- 14.17 Features of a wound-rotor induction motor, 323
- 14.18 Start-up of high-inertia loads, 323
- 14.19 Variable-speed drives, 323
- 14.20 Frequency converter, 323
- Questions and Problems, 326

15 EQUIVALENT CIRCUIT OF THE INDUCTION MOTOR, 330

- 15.0 Introduction, 330
- 15.1 The wound-rotor induction motor, 330
- 15.2 Power relationships, 333
- 15.3 Phasor diagram of the induction motor, 334
- 15.4 Breakdown torque and speed, 335
- 15.5 Equivalent circuit of two practical motors, 335

- 15.6 Calculation of the breakdown torque, 336
- 15.7 Torque-speed curve and other characteristics, 337
- 15.8 Properties of an asynchronous generator, 338
- 15.9 Tests to determine the equivalent circuit, 339

Questions and Problems, 341

16 SYNCHRONOUS GENERATORS, 343

- 16.0 Introduction, 343
- 16.1 Commercial synchronous generators, 343
- 16.2 Number of poles, 343
- 16.3 Main features of the stator, 344
- 16.4 Main features of the rotor, 348
- 16.5 Field excitation and exciters, 350
- , 16.6 Brushless excitation, 351
 - 16.7 Factors affecting the size of synchronous generators, 352
 - 16.8 No-load saturation curve, 353
 - 16.9 Synchronous reactance—equivalent circuit of an ac generator, 354
 - 16.10 Determining the value of X_s , 356.
 - 16.11 Base impedance, per-unit X_s, 357
 - 16.12 Short-circuit ratio, 358
 - 16.13 Synchronous generator under load, 358
 - 16.14 Regulation curves, 360
 - 16.15 Synchronization of a generator, 361
 - 16.16 Synchronous generator on an infinite bus, 363
 - 16.17 Infinite bus—effect of varying the exciting current, 363
 - 16.18 Infinite bus—effect of varying the mechanical torque, 363
 - 16.19 Physical interpretation of alternator behavior, 365
 - 16.20 Active power delivered by the generator, 366
 - 16.21 Control of active power, 367
 - 16.22 Transient reactance, 367
 - 16.23 Power transfer between two sources, 369

16.24 Efficiency, power, and size of electrical machines, 370Questions and Problems, 372

17 SYNCHRONOUS MOTORS, 377

- 17.0 Introduction, 377
- 17.1 Construction, 378
- 17.2 Starting a synchronous motor, 380
- 17.3 Pull-in torque, 380
- 17.4 Motor under load—general description, 380
- 17.5 Motor under load—simple calculations, 381
- 17.6 Power and torque, 384
- 17.7 Mechanical and electrical angles, 385
- 17.8 Reluctance torque, 386
- 17.9 Losses and efficiency of a synchronous motor, 387
- 17.10 Excitation and reactive power, 388
- 17.11 Power factor rating, 389
- 17.12 V-curves, 390
- 17.13 Stopping synchronous motors, 391
- 17.14 The synchronous motor versus the induction motor, 393
- 17.15 Synchronous capacitor, 393 Ouestions and Problems, 396

18 SINGLE-PHASE MOTORS, 399

- 18.0 Introduction, 399
- 18.1 Construction of a single-phase induction motor, 399
- 18.2 Synchronous speed, 401
- 18.3 Torque-speed characteristic, 402
- 18.4 Principle of operation, 402
- 18.5 Locked-rotor torque, 404
- 18.6 Resistance split-phase motor, 404
- 18.7 Capacitor-start motor, 406
- 18.8 Efficiency and power factor of singlephase induction motors, 407
- 18.9 Vibration of single-phase motors, 409
- 18.10 Capacitor-run motor, 410
- 18.11 Reversing the direction of rotation, 411
- 18.12 Shaded-pole motor, 411

- 18.13 Universal motor, 412
- 18.14 Hysteresis motor, 413
- 18.15 Synchronous reluctance motor, 415
- 18.16 Synchro drive, 416

Equivalent Circuit of a Single-Phase Motor

- 18.17 Magnetomotive force distribution, 417
- 18.18 Revolving mmfs in a single-phase motor, 418
- 18.19 Deducing the circuit diagram of a single-phase motor, 419Ouestions and Problems, 422

19 STEPPER MOTORS, 425

- 19.0 Introduction, 425
- 19.1 Elementary stepper motor, 425
- 19.2 Effect of inertia, 426
- 19.3 Effect of a mechanical load, 427
- 19.4 Torque versus current, 428
- 19.5 Start-stop stepping rate, 428
 - 19.6 Slew speed, 429
 - 19.7 Ramping, 430
 - 19.8 Types of stepper motors, 430
 - 19.9 Motor windings and associated drives, 432
 - 19.10 High-speed operation, 435
 - 19.11 Modifying the time constant, 436
 - 19.12 Bilevel drive, 436
 - 19.13 Instability and resonance, 442
 - 19.14 Stepper motors and linear drives, 442
- Questions and Problems, 442

PART 3. ELECTRICAL AND ELECTRONIC DRIVES

20 BASICS OF INDUSTRIAL MOTOR CONTROL, 447

- 20.0 Introduction, 447
- 20.1 Control devices, 447
- 20.2 Normally open and normally closed contacts, 451
- 20.3 Relay coil exciting current, 451
- 20.4 Control diagrams, 453
- 20.5 Starting methods, 454

- 20.6 Manual across-the-line starters, 455
- 20.7 Magnetic across-the-line starters, 456
- 20.8 Inching and jogging, 458
- 20.9 Reversing the direction of rotation, 459
- 20.10 Plugging, 461
- 20.11 Reduced-voltage starting, 462
- 20.12 Primary resistance starting, 462
- 20.13 Autotransformer starting, 466
- 20.14 Other starting methods, 468
- 20.15 Cam switches, 469
- 20.16 Computers and controls, 470

Electric Drives

- 20.17 Fundamentals of electric drives, 470
- 20.18 Typical torque-speed curves, 471
- 20.19 Shape of the torque-speed curve, 472
- 20.20 Current-speed curves, 474
- 20.21 Regenerative braking, 475
- Questions and Problems, 476

21 FUNDAMENTAL ELEMENTS OF POWER ELECTRONICS, 480

- 21.0 Introduction, 480
- 21.1 Potential level, 480
- 21.2, Voltage across some circuit elements, 482

The Diode and Diode Circuits

- 21.3 The diode, 483
- 21.4 Main characteristics of a diode, 484
- 21.5 Battery charger with series resistor, 484
- 21.6 Battery charger with series inductor, 486
- 21.7 Single-phase bridge rectifier, 488
- 21.8 Filters, 489
- 21.9 Three-phase, 3-pulse diode rectifier, 491
- 21.10 Three-phase, 6-pulse rectifier, 493
- 21.11 Effective line current, fundamental line current, 497
- 21.12 Distortion power factor, 498
- 21.13 Displacement power factor, total power factor, 498
- 21.14 Harmonic content and THD, 499

The Thyristor and Thyristor Circuits

- 21.15 The thyristor, 500
- 21.16 Principles of gate firing, 500
- 21.17 Power gain of a thyristor, 502
- 21.18 Current interruption and forced commutation, 503
- 21.19 Basic thyristor power circuits, 504
- 21.20 Controlled rectifier supplying a passive load (Circuit 1, Table 21D), 504
- 21.21 Controlled rectifier supplying an active load (Circuit 2, Table 21D), 505
- 21.22 Line-commutated inverter (Circuit 3, Table 21D), 506
- 21.23 AC static switch (Circuit 4, Table 21D), 508
- 21.24 Cycloconverter (Circuit 5, Table 21D), 509
- 21.25 3-phase, 6-pulse controllable converter (Circuit 6, Table 21D), 510
 - 21.26 Basic principle of operation, 511
 - 21.27 Three-phase, 6-pulse rectifier feeding an active load, 512
 - 21.28 Delayed triggering—rectifier mode, 513
 - 21.29 Delayed triggering—inverter mode, 515
 - 21.30 Triggering range, 516
 - 21.31 Equivalent circuit of a converter, 517
 - 21.32 Currents in a 3-phase, 6-pulse converter, 519
 - 21.33 Power factor, 519
 - 21.34 Commutation overlap, 522
 - 21.35 Extinction angle, 522

DC-to-DC Switching Converters

- 21.36 Semiconductor switches, 523
- 21.37 DC-to-DC switching converter, 525
- 21.38 Rapid switching, 527
- 21.39 Impedance transformation, 530
- 21.40 Basic 2-quadrant dc-to-dc converter, 530
- 21.41 Two-quadrant electronic converter, 533

- 21.42 Four-quadrant dc-to-dc converter, 534
- 21.43 Switching losses, 536

DC-to-AC Switching Converters

- 21.44 Dc-to-ac rectangular wave converter, 537
- 21.45 Dc-to-ac converter with pulse width modulation, 538
- 21.46 Dc-to-ac sine wave converter, 540
- 21.47 Generating a sine wave, 541
- 21.48 Creating the PWM pulse train, 542
- 21.49 Dc-to-ac 3-phase converter, 544
- 21.50 The converter as a universal generator, 549
- 21.51 Conclusion, 550

Questions and Problems, 550

22 ELECTRONIC CONTROL OF DIRECT-CURRENT MOTORS, 555

- 22.0 Introduction, 555
- 22.1 First quadrant speed control, 555
- 22.2 Two-quadrant control—field reversal, 558
- 22.3 Two-quadrant control— armature reversal, 559
- 22.4 Two-quadrant control—two converters, 559
- 22.5 Four-quadrant control—two converters with circulating current, 560
- 22.6 Two-quadrant control with positive torque, 563
- 22.7 Four-quadrant drive, 563
- 22.8 Six-pulse converter with freewheeling diode, 565
- 22.9 Half-bridge converter, 570
- 22.10 DC traction, 572
- 22.11 Motor drive using a dc-to-dc switching converter, 574
- 22.12 Introduction to brushless dc motors, 579
- 22.13 Commutator replaced by reversing switches, 580
- 22.14 Synchronous motor as a brushless dc machine, 582
- 22.15 Standard synchronous motor and brushless dc machine, 583

22.16 Practical application of a brushless dc motor, 583Questions and Problems, 585

23 ELECTRONIC CONTROL OF ALTERNATING-CURRENT MOTORS, 589

- 23.0 Introduction, 589
- 23.1 Types of ac drives, 589
- 23.2 Synchronous motor drive using current-source dc link, 591
- 23.3 Synchronous motor and cycloconverter, 594
- 23.4 Cycloconverter voltage and frequency control, 594
- 23.5 Squirrel-cage induction motor with cycloconverter, 596
- 23.6 Squirrel-cage motor and static voltage controller, 603
- 23.7 Soft-starting cage motors, 604

Self-Commutated Inverters

- 23.8 Self-commutated inverters for cage motors, 606
- 23.9 Current-source self-commutated frequency converter (rectangular wave), 607
- 23.10 Voltage-source self-commutated frequency converter (rectangular wave), 608
- 23.11 Chopper speed control of a woundrotor induction motor, 611
- 23.12 Recovering power in a wound-rotor induction motor, 613

Pulse-Width Modulation Drives

- 23.13 Review of pulse-width modulation, 616
- 23.14 Pulse-width modulation and induction motors, 618

Torque and Speed Control of Induction Motors

- 23.15 DC motor and flux orientation, 618
- 23.16 Slip speed, flux orientation, and torque, 619
- 23.17 Features of variable-speed control-constant torque mode, 621

- 23.18 Features of variable-speed control-constant horsepower mode, 624
- 23.19 Feature of variable-speed control-generator mode, 624
- 23.20 Induction motor and its equivalent circuit, 625
- 23.21 Equivalent circuit of a practical motor, 626
- 23.22 Volts per hertz of a practical motor, 627
- 23.23 Speed and torque control of induction motors, 628
- 23.24 Carrier frequencies, 629
- 23.25 Dynamic control of induction motors, 629
- 23.26 Principle of flux vector control, 630
- 23.27 Variable-speed drive and electric traction, 632
- 23.28 Principal components, 635
- 23.29 Operating mode of the 3-phase converter, 636
- 23.30 Operating mode of the single-phase converter, 638
- 23.31 Direct torque control, 643
- 23.32 Controlling the flux and torque by hysteresis, 644
- 23.33 Controlling the speed, 644
- 23.34 Producing a magnetic field in a 2-phase motor, 644
- 23.35 Producing a rotating field, 647
- 23.36 Controlling the magnetic flux, 648
- 23.37 Controlling the speed of rotation, 650
- 23.38 Programming logic of the switching procedure, 650
- 23.39 Instantaneous slip and production of torque, 652
- 23.40 Control of 3-phase motors, 653
- 23.41 Schematic diagram of a DTC, 655
- 23.42 Conclusion, 656
- Questions and Problems, 658

PART 4. ELECTRIC UTILITY POWER SYSTEMS

24 GENERATION OF ELECTRICAL ENERGY, 665

- 24.0 Introduction, 665
- 24.1 Demand of an electrical system, 665
- 24.2 Location of the generating station, 667
- 24.3 Types of generating stations, 667
- 24.4 Controlling the power balance between generator and load, 668
- 24.5 Advantage of interconnected systems, 669
- 24.6 Conditions during an outage, 671
- 24.7 Frequency and electric clocks, 672

Hydropower Generating Stations

- 24.8 Available hydro power, 672
- 24.9 Types of hydropower stations, 673
 - 24.10 Makeup of a hydropower plant, 674
 - 24.11 Pumped-storage installations, 676

Thermal Generating Stations

24.12 Makeup of a thermal generating station, 678

į.

- 24.13 Turbines, 680
- 24.14 Condenser, 680
- 24.15 Cooling towers, 680
- 24.16 Boiler-feed pump, 681
- 24.17 Energy flow diagram for a steam plant, 681
- 24.18 Thermal stations and the environment, 682

Nuclear Generating Stations

- 24.19 Composition of an atomic nucleus; isotopes, 685
- 24.20 The source of uranium, 685
- 24.21 Energy released by atomic fission, 686
- 24.22 Chain reaction, 686
- 24.23 Types of nuclear reactors, 687
- 24.24 Example of a light-water reactor, 688
- 24.25 Example of a heavy-water reactor, 689

- 24.26 Principle of the fast breeder reactor, 690
- 24.27 Nuclear fusion, 691
- Wind-Generating Stations
- 24.28 Properties of the wind, 691
- 24.29 Harnessing wind power, 693
- 24.30 Wind turbine driving a dc generator, 693
- 24.31 Turbine driving an asychronous generator at constant speed, 693
- 24.32 Turbine driving an asynchronous generator at variable speed, 694
- 24.33 Turbine driving a doubly-fed induction generator, 695
- 24.34 Turbine directly driving a permanent magnet alternator, 696
- 24.35 Examples of wind-generating stations. 697
- Questions and Problems, 700

25 TRANSMISSION OF ELECTRICAL ENERGY, 706

- 25.0 Introduction, 706
- Principal components of a power 25.1distribution system, 706
- 25.2 Types of power lines, 707
- Standard voltages, 709 25.3
- Components of a HV transmission 25.4 line, 709
- Construction of a line, 710 25.5
- 25.6 Galloping lines, 711
- 25.7 Corona effect---radio interference, 711
- 25.8 Pollution, 711
- 25.9 Lightning strokes, 712
- 25.10 Lightning arresters on buildings, 713
- 25.11 Lightning and transmission lines, 713
- 25.12 Basic impulse insulation level (BIL), 714
- 25.13 Ground wires, 715
- 25.14 Tower grounding, 715
- 25.15 Fundamental objectives of a transmission line, 717

- 25.16 Equivalent circuit of a line, 718
- 25.17 Typical impedance values, 718
- 25.18 Simplifying the equivalent circuit, 720
- 25.19 Voltage regulation and powertransmission capability of transmission lines, 722
- 25.20 Resistive line, 722
- 25.21 Inductive line, 723
- 25.22 Compensated inductive line, 725
- 25.23 Inductive line connecting two systems, 727
- 25.24 Review of power transmission, 728
- 25.25 Choosing the line voltage, 729
- 25.26 Methods of increasing the power capacity, 731
- 25.27 Extra-high-voltage lines, 731
- 25.28 Power exchange between power centers, 734
- 25.29 Practical example of power exchange, 735 Questions and Problems, 737

26 DISTRIBUTION OF ELECTRICAL ENERGY, 740

26.0 Introduction, 740

Substations

- 26.1 Substation equipment, 740
- 26.2 Circuit breakers, 740
- 26.3 Air-break switches, 744
- Disconnecting switches, 744 26.4
- Grounding switches, 744 26.5
- 26.6 Surge arresters, 744
- 26.7 Current-limiting reactors, 747
- 26.8 Grounding transformer, 748
- 26.9 Example of a substation, 749
- 26.10 Medium-voltage distribution, 751
- 26.11 Low-voltage distribution, 751

Protection of Medium-Voltage Distribution Systems

- 26.12 Coordination of the protective devices, 756
- 26.13 Fused cutouts, 757
- 26.14 Reclosers, 758

- 26.15 Sectionalizers, 758
- 26.16 Review of MV protection, 759
- Low-Voltage Distribution
- 26.17 LV distribution system, 759
- 26.18 Grounding electrical installations, 761
- 26.19 Electric shock, 761
- 26.20 Grounding of 120 V and 240 V/120 V systems, 762
- 26.21 Equipment grounding, 763
- 26.22 Ground-fault circuit breaker, 765
- 26.23 Rapid conductor heating: The I^2t factor, 766
- 26.24 The role of fuses, 767
- 26.25 Electrical installation in buildings, 767
- 26.26 Principal components of an electrical installation, 767

Questions and Problems, 769

27 THE COST OF ELECTRICITY, 771

- 27.0 Introduction, 771
- 27.1 Tariff based upon energy, 772
- 27.2 Tariff based upon demand, 772
- 27.3 Demand meter, 772
- 27.4 Tariff based upon power factor, 774
- 27.5 Typical rate structures, 775
- 27.6 Demand controllers, 775
- 27.7 Power factor correction, 779
- 27.8 Measuring electrical energy, the watthourmeter, 782
- 27.9 Operation of the watthourmeter, 783
- 27.10 Meter readout, 784
- 27.11 Measuring 3-phase energy and power, 785

Questions and Problems, 785

28 DIRECT-CURRENT TRANSMISSION, 788

- 28.0 Introduction, 788
- 28.1 Features of dc transmission, 788
- 28.2 Basic dc transmission system, 789
- 28.3 Voltage, current, and power relationships, 790
- 28.4 Power fluctuations on a dc line, 793
- 28.5 Typical rectifier and inverter characteristics, 794

- 28.6 Power control, 795
- 28.7 Effect of voltage fluctuations, 796
- 28.8 Bipolar transmission line, 796
- 28.9 Power reversal, 797
- 28.10 Components of a dc transmission line, 797
- 28.11 Inductors and harmonic filters on the dc side (6-pulse converter), 798
- 28.12 Converter transformers, 798
- 28.13 Reactive power source, 799
- 28.14 Harmonic filters on the ac side, 799
- 28.15 Communications link, 799
- 28.16 Ground electrode, 799
- 28.17 Example of a monopolar converter station, 799
- 28.18 Thyristor converter station, 800
- 28.19 Typical installations, 802

HVDC Light Transmission System

- 28.20 Transporting electric power to remote locations, 808
- 28.21 Components of a static generator, 808
- 28.22 Overview of the HVDC light transmission system, 809
- 28.23 Control of active power, 811
- 28.24 Example of a HVDC light transmission system, 812
- Questions and Problems, 814

29 TRANSMISSION AND DISTRIBUTION SOLID-STATE CONTROLLERS, 816

29.0 Introduction, 816

Transmission Power Flow

Controllers

- 29.1 Thyristor-controlled series capacitor (TCSC), 817
- 29.2 Vernier control, 819
- 29.3 Static synchronous compensator, 821
- 29.4 Eliminating the harmonics, 824
- 29.5 Unified power flow controller (UPFC), 824
- 29.6 Static frequency changer, 828

Distribution Custom Power Products

29.7 Disturbances on distribution systems, 830

С

- 29.8 Why PWM converters?, 832
- 29.9 Distribution system, 833
- 29.10 Compensators and circuit analysis, 835
- 29.11 The shunt compensator: Principle of operation, 835
- 29.12 The series compensator: principle of operation, 841
- 29.13 Conclusion, 844
- Questions and Problems, 845

30 HARMONICS, 847

- 30.0 Introduction, 847
- 30.1 Harmonics and phasor diagrams, 847
- 30.2 Effective value of a distorted wave, 848
- 30.3 Crest factor and total harmonic distortion (THD), 849
- 30.4 Harmonics and circuits, 850
- 30.5 Displacement power factor and total power factor, 852
- 30.6 Nonlinear loads, 852
- 30.7 Generating harmonics, 853
- 30.8 Correcting the power factor, 855
- 30.9 Generation of reactive power, 856

Effect of Harmonics

- 30.10 Harmonic current in a capacitor, 857
- 30.11 Harmonic currents in a conductor, 858
- 30.12 Distorted voltage and flux in a coil, 858
- 30.13 Harmonic currents in a 3-phase, 4-wire distribution system, 860
- 30.14 Harmonics and resonance, 861
- 30.15 Harmonic filters, 866
- 30.16 Harmonics in the supply network, 867
- 30.17 Transformers and the K factor, 869

Harmonic Analysis

- 30.18 Procedure for analyzing a periodic wave, 871
- Questions and Problems, 875

31 PROGRAMMABLE LOGIC CONTROLLERS, 879

- 31.0 Introduction, 879
- 31.1 Capacity of industrial PLCs, 879

- 31.2 Elements of a control system, 880
- 31.3 Examples of the use of a PLC, 883
- 31.4 The central processing unit (CPU), 886
- 31.5 Programming unit, 886
- 31.6 The I/O modules, 887
- 31.7 Structure of the input modules, 887
- 31.8 Structure of the output modules, 888
- 31.9 Modular construction of PLCs, 889
- 31.10 Remote inputs and outputs, 889
- 31.11 Conventional control circuits and PLC circuits, 892
- 31.12 Security rule, 895
- 31.13 Programming the PLC, 895
- 31.14 Programming languages, 895
- 31.15 Advantages of PLCs over relay cabinets, 896

Modernization of an Industry

- 31.16 Industrial application of PLCs, 898
- → 31.17 Planning the change, 898
 - 31.18 Getting to know PLCs, 899
 - 31.19 Linking the PLCs, 901
 - 31.20 Programming the PLCs, 901

31.21 The transparent enterprise, 903

Questions and Problems, 904

References, 907

Appendixes, 913

Conversion Charts, 913

Properties of Insulating Materials, 917

Properties of Conductors and Insulators, 918

Properties of Round Copper Conductors, 919

Answers to Problems, 921

Answers to Industrial Application Problems, 925

Index, 927