

INTEGRATION OF ALTERNATIVE SOURCES OF ENERGY

FELIX A. FARRET M. GODOY SIMÕES

WILEY-

A JOHN WILEY & SONS, INC., PUBLICATION

CONTENTS

語いたのないたというためというたいでい

CONTRIBUTORS x FOREWORD x PREFACE x ACKNOWLEDGMENTS xx ABOUT THE AUTHORS x 1 ALTERNATIVE SOURCES OF ENERGY 1.1 Introduction 1.2 Renewable Sources of Energy 1.3 Renewable Energy Versus Alternative Energy 1.4 Planning and Development of Integrated Energy 1.4.1 Grid-Supplied Electricity 1.4.2 Load 1.4.3 Distributed Generation	vii
FOREWORD : PREFACE : ACKNOWLEDGMENTS xx ABOUT THE AUTHORS xx 1 ALTERNATIVE SOURCES OF ENERGY 1.1 Introduction 1.2 Renewable Sources of Energy 1.3 Renewable Energy Versus Alternative Energy 1.4 Planning and Development of Integrated Energy 1.4.1 Grid-Supplied Electricity 1.4.2 Load 1.4.3 Distributed Generation	
PREFACE xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	kix
ACKNOWLEDGMENTS ABOUT THE AUTHORS 1 ALTERNATIVE SOURCES OF ENERGY 1.1 Introduction 1.2 Renewable Sources of Energy 1.3 Renewable Energy Versus Alternative Energy 1.4 Planning and Development of Integrated Energy 1.4.1 Grid-Supplied Electricity 1.4.2 Load 1.4.3 Distributed Generation	(XI
ABOUT THE AUTHORS 1 ALTERNATIVE SOURCES OF ENERGY 1.1 Introduction 1.2 Renewable Sources of Energy 1.3 Renewable Energy Versus Alternative Energy 1.4 Planning and Development of Integrated Energy 1.4.1 Grid-Supplied Electricity 1.4.2 Load 1.4.3 Distributed Generation	diii
 ALTERNATIVE SOURCES OF ENERGY 1.1 Introduction 1.2 Renewable Sources of Energy 1.3 Renewable Energy Versus Alternative Energy 1.4 Planning and Development of Integrated Energy 1.4.1 Grid-Supplied Electricity 1.4.2 Load 1.4.3 Distributed Generation 	XV
 1.1 Introduction 1.2 Renewable Sources of Energy 1.3 Renewable Energy Versus Alternative Energy 1.4 Planning and Development of Integrated Energy 1.4.1 Grid-Supplied Electricity 1.4.2 Load 1.4.3 Distributed Generation 	1
 1.2 Renewable Sources of Energy 1.3 Renewable Energy Versus Alternative Energy 1.4 Planning and Development of Integrated Energy 1.4.1 Grid-Supplied Electricity 1.4.2 Load 1.4.3 Distributed Generation 	1
 1.3 Renewable Energy Versus Alternative Energy 1.4 Planning and Development of Integrated Energy 1.4.1 Grid-Supplied Electricity 1.4.2 Load 1.4.3 Distributed Generation 	2
 1.4 Planning and Development of Integrated Energy 1.4.1 Grid-Supplied Electricity 1.4.2 Load 1.4.3 Distributed Generation 	4
 1.4.1 Grid-Supplied Electricity 1.4.2 Load 1.4.3 Distributed Generation 	8
1.4.2 Load 1.4.3 Distributed Generation	9
1.4.3 Distributed Generation	10
	10
1.5 Renewable Energy Economics	11
1.5.1 Calculation of Electricity Generation Costs	12
1.6 European Targets for Renewables	14
1.6.1 Demand-Side Management Options	15
1.6.2 Supply-Side Management Options	16
1.7 Integration of Renewable Energy Sources	19
1.7.1 Integration of Renewable Energy in the United States	20
1.7.2 Energy Recovery Time	21
1.7.3 Sustainability	23
1.8 Modern Electronic Controls of Power Systems	26
References	27

2	PRI	NCIPL	ES OF THERMODYNAMICS	28
	2.1.	Introd	uction	28
	2.2.	State	of a Thermodynamic System	29
	2.3.	Funda	mental Laws and Principles	36
		2.3.1	Example in a Nutshell	37
		2.3.2	Practical Problems Associated with Carnot Cycle Plant	40
		2.3.3	Rankine Cycle for Power Plants	41
		2.3.4	Brayton Cycle for Power Plants	44
		2.3.5	Energy and Power	46
	2.4	Exam	ples of Energy Balance	47
		2.4.1	Simple Residential Energy Balance	47
		2.4.2	Refrigerator Energy Balance	48
		2.4.3	Energy Balance for a Water Heater	49
		2.4.4	Rock Bed Energy Balance	51
		2.4.5	Array of Solar Collectors	51
		2.4.6	Heat Pump	52
		2.4.7	Heat Transfer Analysis	53
	2.5	Planet	Earth: A Closed But Not Isolated System	54
	Refe	erences		56
2	цуг	ישטפו	ECTRIC DOWER DI ANTS	57
3				57
	3.1	Introd	uction	57
	3.2	Detern	mination of the Useful Power	58
	3.3	Exped	lient Topographical and Hydrological Measurements	60
		3.3.1	Simple Measurement of Elevation	60
		3.3.2	Global Positioning Systems for Elevation Measurement	60
		3.3.3	Specification of Pipe Losses	62
		3.3.4	Expedient Measurements of Stream Water Flow	63
	.	3.3.5	Civil Works	67
	3.4	Gener	ating Unit	67
		3.4.1	Regulation Systems	67
	~ -	3.4.2	Butterfly Valves	68
	3.5	Water	wheels	68
	3.6	Turbin		70
		3.6.1	Peiton Iurbine	71
		3.6.2	Francis Iurdine	14
		3.0.3	MICHEL-BANKI LURDINE	

.

	3.6.4	Kaplan or Hydraulic Propeller Turbine	79
	3.6.5	Deriaz Turbines	80
	3.6.6	Water Pumps Working as Turbines	80
	3.6.7	Specification of Hydro Turbines	81
Refe	erences		82
WIN	D PO	WER PLANTS	84
4.1	Introd	uction	84
4.2	Appro	priate Location	85
	4.2.1	Evaluation of Wind Intensity	85
	4.2.2	Topography	93
	4.2.3	Purpose of the Energy Generated	95
	4.2.4	Means of Access	95
4.3	Wind	Power	95
4.4	Gener	al Classification of Wind Turbines	97
	4.4.1	Rotor Turbines	99
	4.4.2	Multiple-Blade Turbines	99
	4.4.3	Drag Turbines (Savonius)	100
	4.4.4	Lifting Turbines	101
	4.4.5	System TARP-WARP	102
	4.4.6	Accessories	103
4.5	Gener	ators and Speed Control Used in Wind Power Energy	104
4.6	Analy	sis of Small Generating Systems	107
Refe	erences		110
тні	ERMOS	SOLAR POWER PLANTS	112
5.1	Introd	uction	112
5.2	Water	Heating by Solar Energy	112
5.3	Heat 7	Transfer Calculation of Thermally Isolated Reservoirs	115
5.4	Heatir	ng Domestic Water	118
5.5	Therm	nosolar Energy	119
	5.5.1	Parabolic Trough	120
	5.5.2	Parabolic Dish	122
	5.5.3	Solar Power Tower	124
	5.5.4	Production of Hydrogen	125
5.6	Econo	mical Analysis of Thermosolar Energy	126
Refe	erences		127

4

COMTENTS	

al.	IN COMPANYS							
6	PHO	οτονα	DLTAIC POWER PLANTS	129				
	6.1	Introd	uction	129				
	6.2 Solar Energy							
	6.3 Generation of Electricity by Photovoltaic Effect							
	6.4 Dependence of a PV Cell Characteristic on Temperature							
1	6.5	Solar	Cell Output Characteristics	137				
	6.6	Equiva	alent Models and Parameters for Photovoltaic Panels	139				
		6.6.1	Dark-Current Electric Parameters of a Photovoltaic Panel	140				
		6.6.2	Model of a PV Panel Consisting of n Cells in Series	142				
		6.6.3	Model of a PV Panel Consisting of n Cells in Parallel	144				
	6.7	Photo	voltaic Systems	145				
		6.7.1	Illumination Area	146				
		6.7.2	Solar Modules and Panels	146				
		6.7.3	Aluminum Structures	146				
		6.7.4	Load Controller	148				
		6.7.5	Battery Bank	148				
	6.8	Applic	cations of Photovoltaic Solar Energy	149				
		6.8.1	Residential and Public Illumination	149				
		6.8.2	Stroboscopic Signaling	150				
		6.8.3	Electric Fence	150				
		6.8.4	Telecommunications	151				
		6.8.5	Water Supply and Micro-Irrigation Systems	151				
		6.8.6	Control of Plagues and Conservation of					
			Food and Medicine	153				
		6.8.7	Hydrogen and Oxygen Generation by Electrolysis	154				
		6.8.8	Electric Power Supply	155				
		6.8.9	Security and Alarm Systems	156				
	6.9	Econo	mical Analysis of Solar Energy	156				
	Refe	rences		157				
7	PO\	VER P	LANTS WITH FUEL CELLS	159				
	7.1	Introd	uction	159				
	7.2	The F	uel Cell	160				
	7.3	Comm	nercial Technologies for Generation of Electricity	162				
	7.4 Practical Issues Palated to Eucl Call Stacking							
	7.4	Practic	7.4 Fractical issues kerated to Fuel Cell Stacking 109					
	7.4	Practic 7.4.1	Low- and High-Temperature Fuel Cells	169 169				

.

7.5	Constructional Features of Proton Exchange	
	Membrane Fuel Cells	171
7.6	Constructional Features of Solid Oxide Fuel Cells	173
7.7	Water, Air, and Heat Management	175
7.8	Load Curve Peak Shaving with Fuel Cells	176
	7.8.1 Maximal Load Curve Flatness at Constant Output Power	176
	7.8.2 Amount of Thermal Energy Necessary	178
7.9	Reformers, Electrolyzer Systems, and Related Precautions	180
7.10	Advantages and Disadvantages of Fuel Cells	181
7.11	Fuel Cell Equivalent Circuit	182
7.12	Practical Determination of the Equivalent Model Parameters	188
	7.12.1 Example of Determination of FC Parameters	191
7.13	Aspects of Hydrogen as Fuel	194
7.14	Future Perspectives	195
Refe	rences	196
BIO	MASS-POWERED MICROPLANTS	198
8.1	Introduction	198
8.2	Fuel from Biomass	202
8.3	Biogas	204
8.4	Biomass for Biogas	205
8.5	Biological Formation of Biogas	206
8.6	Factors Affecting Biodigestion	207
8.7	Characteristics of Biodigesters	209
8.8	Construction of Biodigester	210
	8.8.1 Sizing a Biodigester	211
8.9	Generation of Electricity Using Biogas	211
Refe	rences	214
MIC	ROTURBINES	215
9.1	Introduction	215
9.2	Princples of Operation	217
9.3	Microturbine Fuel	219
9.4	Control of Microturbines	220
	9.4.1 Mechanical-Side Structure	220
	9.4.2 Electrical-Side Structure	222
	9.4.3 Control-Side Structure	224

.

9

9.5	Efficiency	and Power of Microturbines	228
9.6	Site Asses	ssment for Installation of Microturbines	230
Refere	ences		231
10 INDU		GENERATORS	233
10.1	Introdu	ction	233
10.2	Princip	les of Operation	234
10.3	10.3 Representation of Steady-State Operation		
10.4	10.4 Power and Losses Generated		
10.5	Self-Ex	cited Induction Generator	240
10.6	Magnet	tizing Curves and Self-Excitation	242
10.7	Mathen	natical Description of the Self-Excitation Process	243
10.8	Intercon	nnected and Stand-Alone Operation	246
10.9	Speed a	and Voltage Control	248
	10.9.1	Frequency, Speed, and Voltage Controls	249
	10.9.2	Load Control Versus Source Control	
		for Induction Generators	250
	10.9.3	The Danish Concept	254
	10.9.4	Variable-Speed Grid Connection	255
	10.9.5	Control by the Load Versus Control by	
10.10	-	the Source	256
10.10	Econon	nical Aspects	258
Refere	ences		259
11 STO	RAGE S	YSTEMS	262
11.1	Introdu	ction	262
11.2	Energy	Storage Parameters	265
11.3	Lead-A	Acid Batteries	268
	11.3.1	Constructional Features	268
	11.3.2	Battery Charge–Discharge Cycles	269
	11.3.3	Operating Limits and Parameters	271
	11.3.4	Maintenance of Lead–Acid Batteries	273
	11.3.5	Sizing Lead–Acid Batteries for DG Applications	273
11.4	Ultraca	pacitors	276
	11.4.1	Double-Layer Ultracapacitors	277
	11.4.2	High-Energy Ultracapacitors	278
	11.4.3	Applications of Ultracapacitors	279

11.5	Flywheel	s	282
	11.5.1	Advanced Performance of Flywheels	282
	11.5.2	Applications of Flywheels	282
	11.5.3 I	Design Strategies	284
11.6	Supercon	ducting Magnetic Storage System	286
	11.6.1	SMES System Capabilities	287
	11.6.2 I	Developments in SMES Systems	288
11.7	Pumped 2	Hydroelectric Energy Storage	290
	11.7.1	Storage Capabilities of Pumped Systems	291
11.8	Compress	sed Air Energy Storage	292
11.9	Storage H	Heat	294
11.10	Energy S	torage as an Economic Resource	295
Refer	ences		299
12 INTE	GRATION	OF ALTERNATIVE SOURCES	
OF E	NERGY		301
12.1	Introduct	ion	301
12.2	Principles of Power Injection		302
	12.2.1	Converting Technologies	302
	12.2.2 I	Power Converters for Power Injection	
	i	into the Grid	304
	12.2.3 I	Power Flow	306
12.3	Instantan Control A	eous Active and Reactive Power Approach	309
12.4	Integratio	on of Multiple Renewable Energy Sources	312
	12.4.1	DC-Link Integration	315
	12.4.2	AC-Link Integration	316
	12.4.3	HFAC-Link Integration	317
12.5	Islanding	and Interconnection Control	320
12.6	DG Cont	trol and Power Injection	325
Refer	ences		331
13 DIST	RIBUTED	GENERATION	333
13.1	Introduct	ion	333
13.2	The Purn	pose of Distributed Generation	335
13.3	Sizing an	nd Siting of Distributed Generation	338
13.4	Demand-	Side Management	339
13.5	Optimal	Location of Distributed Energy Sources	340

		13.5.1	DG Influence on Power and Energy	
			Losses	342
		13.5.2	Estimation of DG Influence on Power	246
		10.5.0	Losses of Subtransmission Systems	346
		13.5.3	Equivalent of Subtransmission Systems	3/8
	13.6	Algorith	osing Experimental Design	350
	13.0 Defere	Algoriu	in or municitiental Analysis	350
	Kelelel	lices		552
14	INTER		CTION OF ALTERNATIVE ENERGY	
	SOUR	CES W	TH THE GRID	354
	Domian	in Vuon	ochi Thomas Passa Pichard DePlacia	
	and N.	un Krope Richard	ski, Thomas Basso, Kichara Debiasio, Friedman	
	14.1	T		254
	14.1	Introduc	cuon	354
	14.2	Intercor	Surghanness Interconnection	257
		14.2.1	Synchronous Interconnection	251
		14.2.2	Induction Interconnection	250
	14.2	14.2.3 Standon	Inverter Interconnection	250
	14.3		us and Codes for Interconnection	339
		14.3.1	IEEE 1547	300
		14.3.2	National Electrical Code	262
	144	14.3.3 Intercor	OL Standards	302
	14.4		Voltage Degulation	304 264
		14.4.1	Integration with Area EDS Crounding	265
		14.4.2	Integration with Area EPS Grounding	265
		14.4.5		265
		14.4.4	Isolation Response to Voltage Disturbance	266
		14.4.5	Response to Frequency Disturbance	367
		14.4.0	Disconnection for Faults	368
		14.4.7	Loss of Synchronism	360
		14.4.0	Feeder Reclosing Coordination	369
		14.4.10	DC Injection	370
		14 4 11	Voltage Flicker	371
		14 4 12	Harmonics	371
		14.4.13	Unintentional Islanding Protection	373
	14.5	Intercor	unection Examples for Alternative Energy Sources	373
	1	14.5.1	Synchronous Generator for Peak Demand Reduction	375
			,	

			CONTENTS	xv
		14.5.2 Small Grid-Connected Photovoltaic System		375
Ч.	Refe	rences		378
45	MIC	ROPOWER SYSTEM MODELING WITH HOMER		379
e i				
ð	Тот	Lambert, Paul Gilman, and Peter Lilienthal		
1.	15.1	Introduction		379
	15.2	Simulation		381
2. 2.	15.3	Optimization		385
į.	15.4	Sensitivity Analysis		388
è,		15.4.1 Dealing with Uncertainty		389
e S		15.4.2 Sensitivity Analyses on Hourly Data Sets		391
- 	15.5	Physical Modeling		393
		15.5.1 Loads		393
		15.5.2 Resources		395
ang Istori		15.5.3 Components		397
		15.5.4 System Dispatch		408
	15.6	Economic Modeling		414
	Refe	rences		416
	Glos	sary		416
AF	PEN	DIX A: DIESEL POWER PLANTS		419
	A.1	Introduction		419
	A.2	Diesel Engine		420
	A.3	Principal Components of a Diesel Engine		421
		A.3.1 Fixed Parts		421
		A.3.2 Moving Parts		421
		A.3.3 Auxiliary Systems		422
	A.4	Terminology of Diesel Engines		422
		A.4.1 Diesel Cycle		422
		A.4.2 Combustion Process		424
	A.5	Diesel Engine Cycle		425
		A.5.1 Relative Diesel Engine Cycle Losses		425
		A.5.2 Classification of Diesel Engines		426
	A.6	Types of Fuel Injection Pumps		427
	A.7	Electrical Conditions of Generators Driven by		
		Diesel Engines		427
	Dafa	rangan		120

とうためはかから、おというないにしたとした。

xvi	CONTENTS			
APPE	ENDIX B: GEOTHERMAL ENERGY	431		
В.	1 Introduction	431		
B .:	2 Geothermal as a Source of Energy	432		
	B.2.1 Geothermal Economics	434		
	B.2.2 Geothermal Electricity			
	B.2.3 Geothermal/Ground Source Heat Pumps			
Re	sferences	437		
APPE	ENDIX C: THE STIRLING ENGINE	438		
C .	1 Introduction	438		
C .2	2 Stirling Cycle	439		
C.(3 Displacer Stirling Engine	442		
C.4	4 Two-Piston Stirling Engine	444		
Re	ferences	446		

INDEX