## Species diversity in space and time

Michael L. Rosenzweig

Professor Department of Ecology and Evolutionary Biology University of Arizona

&

Brittingham Fellow Department of Zoology University of Wisconsin



## Contents

|           | Preface                                     | xiii |
|-----------|---------------------------------------------|------|
| Chapter 1 | The road ahead                              | 1    |
|           | How many rooms in Noah's Ark?               | 1    |
|           | The structure of this book                  | 4    |
| Chapter 2 | Patterns in space                           | 8    |
|           | Species-area curves                         | 8    |
|           | Latitudinal gradients                       | 25   |
|           | Habitat variety                             | 32   |
|           | Disturbance                                 | 36   |
|           | Productivity                                | 39   |
|           | Hot spots                                   | 46   |
|           | Relative diversity of polyploid species     | 48   |
| Chapter 3 | Patterns in time                            | 50   |
|           | Evolutionary time                           | 50   |
|           | Ecological time                             | 62   |
| Chapter 4 | Dimensionless patterns                      | 73   |
|           | Body size                                   | 73   |
|           | Patterns in food webs and food chains       | 77   |
| Chapter 5 | Speciation                                  | 87   |
|           | Geographical speciation                     | 87   |
|           | Polyploidy                                  | 96   |
|           | Competitive speciation                      | 97   |
|           | Evidence for competitive speciation         | 105  |
|           | The relative importance of speciation modes | 107  |
|           | Immigration                                 | 110  |
| Chapter 6 | Extinction                                  | 112  |
|           | Basic causes                                | 112  |
|           | Who suffers accidents?                      | 113  |
|           | The role of population interactions         | 125  |
|           | Extinction rates and diversity              | 128  |

i

ç

|            | Measuring extinction rates<br>Doomed species – extinction may take a long time<br>Mass extinctions                                                                                                                                                                                                         | 135<br>145<br>146                             |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Chapter 7  | Coevolution of habitat diversity and<br>species diversity<br>The tradeoff principle<br>Speciation will break up a cartel of phenotypes<br>The coevolution of niche breadth<br>Plants also restrict themselves to their best habitats<br>Seasonality<br>The evolution of habitat diversity                  | 151<br>151<br>156<br>157<br>166<br>174<br>175 |
| Chapter 8  | Species-area curves: the classical patterns<br>Mainland patterns<br>Island patterns                                                                                                                                                                                                                        | 190<br>190<br>210                             |
| Chapter 9  | Species-area curves: large issues<br>Interprovincial patterns: species-area curves in<br>evolutionary time<br>The linearity of species-area curves and their slopes<br>Synthesis: species-area curves at several scales of<br>space and time<br>The effect of drifting continents<br>Latitudinal gradients | 264<br>264<br>268<br>276<br>279<br>284        |
| Chapter 10 | Paleobiological patterns<br>The epochal steady state<br>Why, over hundreds of millions of years,<br>does diversity rise?                                                                                                                                                                                   | 297<br>297<br>306                             |
| Chapter 11 | Other patterns with dynamic roots<br>Population dynamics and food webs<br>Polyploidy<br>Disturbance and non-equilibrium systems                                                                                                                                                                            | 317<br>317<br>338<br>341                      |
| Chapter 12 | Energy flow and diversity<br>Experimental increase of productivity<br>The unimodal pattern in regions<br>The global scale<br>Prospects                                                                                                                                                                     | 345<br>345<br>348<br>370<br>371               |

ç

6

.

| ) |
|---|
| ٢ |

| Chapter 13 | Diversity dynamics: a hierarchical puzzle | 373 |
|------------|-------------------------------------------|-----|
|            | The role of differential equations        | 374 |
|            | A large piece of the puzzle: area effects | 376 |
|            | Future exploration of data for pattern    | 377 |
|            | The dinosaur's challenges                 | 378 |
|            | Salute                                    | 381 |
|            | References                                | 385 |
|            | Index                                     | 423 |

- 10

¢

i