THE BOUNDARY ELEMENT METHOD APPLIED IN MINDLIN PLATE BENDING ANALYSIS

Ole Vilmann

CONTENT

1.	INTRODUCTION				
2.	MIND	MINDLIN PLATE THEORY			
	2.1	Derivation of the Mindlin plate theory			
	2.2	Comparision of the Mindlin Plate theory with other plate theories	13		
3.	THE FUNDAMENTAL SOLUTIONS OF THE MINDLIN PLATE THEORY				
	3.1	A SOLUTION FOR A POINT LOAD ACTING IN A CIRCULAR PLATE	23		
	3.2	A SOLUTION FOR A CONCENTRATED BENDING MOMENT ACTININ A CIRCULAR PLATE	NG 25		
	3,3	A comparision of the Mindlin plate model funda- mental solutions with fundamental solutions of other plate theories	28		
4.	THE PROB	BOUNDARY ELEMENT METHOD APPLIED TO PLATE BENDING LEMS, (INTEGRAL REPRESENTATION)	32		
	4.1	THE DIRECT BOUNDARY ELEMENT METHOD FORMULATION BAS	SED 33		
5.	A MA	TRIX FORMULATION OF THE BOUNDARY ELEMENT METHOD	39		
	5.1	Discretization and transformation of Somigliana's identity	39		
		5.1.1 ELEMENTS	42		
		5.1.2 DETERMINATION OF THE BEM EQUATIONS	44		
		5.1.3 DETERMINATION OF THE DIAGONAL MATRIX [C]	51		
	5.2	Description of the boundary element and the cell element	54		
	5,3	Numerical scheme applied to the BEM equations	58		

				PAGE		
	5.4	DETERMI	NATION OF DISPLACEMENTS, ROTATIONS AND	64		
		5.4.1	DETERMINATION OF THE DEFLECTION, THE RO- TATIONS AND THE SECTION FORCES IN AN IN- TERNAL ARBITRARY POINT IN THE PLATE	69		
6.	NUME	RICAL EX	(AMPLES	71		
	6.1	Torsion	N OF A SQUARE PLATE	71		
	6.2	A CIRCU FORCE	JLAR PLATE WITH A CONCENTRATED TRANSVERSE IN THE CENTER	77		
	6.3	A UNIFO WITH A	ORM TRANSVERSE LOADED CIRCULAR CLAMPED PLAT HOLE IN THE CENTER	E 83		
	6.4	Bending	G OF AN INFINITE PLATE WITH A CIRCULAR HOLE	91		
7.	the i Geom	BOUNDAR ETRICALI	Y ELEMENT METHOD APPLIED TO THE THEORY OF LY NONLINEAR MINDLIN PLATES	96		
	7.1	THE CON FORMULA	NTRIBUTION OF THE GEOMETRICAL NON-LINEAR ATION TO MAXWELL-BETTI'S THEOREM	104		
	7.2	THE COL TERMS	NTRIBUTION OF THE GEOMETRICALLY NON-LINEAR TO THE BEM-EQUATIONS	107		
	7.3	NUMERIO	CAL EXAMPLES	116		
		7.3.1	A RECTANGULAR PLATE SIMPLY SUPPORTED ON TWO OPPOSITE SIDES	116		
		7.3.2	A SQUARE PLATE SIMPLY SUPPORTED ON ALL FOUR SIDES	120		
8,	8. CONCLUSION					
REF	ERENC	ES		126		
Appendix A. Fundamental solution for a point load in the center of a circular plate						
App din	endix g mom	B. Fu ent in	ndamental solution for a concentrated ben- the center of a circular plate	142		