Woodhead Publishing Series in Civil and Structural Engineering: Number 54

Handbook of Alkaliactivated Cements, Mortars and Concretes

Edited by

F. Pacheco-Torgal, J. A. Labrincha, C. Leonelli, A. Palomo and P. Chindaprasirt

AMSTERDAM • BOSTON • CAMBRIDGE • HEIDELBERG LONDON • NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Woodhead Publishing is an imprint of Elsevier

Contents

Woo	List of contributors Woodhead Publishing Series in Civil and Structural Engineering Foreword		xv xvii xxi
1	and	oduction to Handbook of Alkali-activated Cements, Mortars Concretes acheco-Torgal	1
		Brief overview on alkali-activated cement-based binders (AACB)	1
	1.2	Potential contributions of AACB for sustainable development	
		and eco-efficient construction	7
	1.3	Outline of the book References	10 13
		e Chemistry, mix design and manufacture of ctivated, cement-based concrete binders	17
2	An o bind	overview of the chemistry of alkali-activated cement-based lers	19
	<i>I. G</i>	arcia-Lodeiro, A. Palomo, A. Fernández-Jiménez	
		Introduction: alkaline cements	19
	2.2	Alkaline activation of high-calcium systems: $(Na,K)_2O$ -CaO- Al ₂ O ₃ -SiO ₂ -H ₂ O	21
	2.3	Alkaline activation of low-calcium systems: (N,K) ₂ O-Al ₂ O ₃ -	
		SiO ₂ -H ₂ O	27
		Alkaline activation of hybrid cements	35
	2.5	Future trends References	42 43
3		cial insights on the mix design of alkali-activated cement-	
		ed binders	49
		arcia-Lodeiro, A. Palomo, A. Fernández-Jiménez	40
		Introduction Compatibility and an interials	49 50
		Cementitious materials Alkaline activators: choosing the best activator for each solid	
		precursor	61
	3.4	Conclusions and futures trends	68
•		References	69

4	Reuse of urban and industrial waste glass as a novel activator	
	for alkali-activated slag cement pastes: a case study	75
	F. Puertas, M. Torres-Carrasco, M. M. Alonso	
	4.1 Introduction	75
	4.2 Chemistry and structural characteristics of glasses	77
	4.3 Waste glass solubility trials in highly alkaline media	81
	4.4 Formation of sodium silicate solution from waste glasses	
	dissolution: study by ²⁹ Si NMR	90
	4.5 Use of waste glasses as an activator in the preparation of	
	alkali-activated slag cement pastes	91
	4.6 Conclusions	105
	Acknowledgements	106
	References	106
Pai	rt Two The properties of alkali-activated cement,	
	rtar and concrete binders	111
mo	rtar and concrete binders	111
5	Setting, segregation and bleeding of alkali-activated cement, mortar and concrete binders	113
		113
	P. Chindaprasirt, T. Cao 5.1 Introduction	113
		113
	5.2 Setting times of cementitious materials and alkali-activated	118
	binder systems	115
	5.3 Bleeding phenomena in concrete	122
	5.4 Segregation and cohesion in concrete	124
	5.5 Future trends	125
	5.6 Sources of further information and advice	126
	References	126
6	Rheology parameters of alkali-activated geopolymeric concrete binders	133
	C. Leonelli, M. Romagnoli	155
	6.1 Introduction: main forming techniques	133
	6.2 Rheology of suspensions	135
	6.3 Rheometry	141
	6.4 Examples of rheological behaviors of geopolymers	151
	6.5 Future trends	150
	References	
	References	168
7	Mechanical strength and Young's modulus of alkali-activated	1 /4 4
	cement-based binders	171
	M. Komljenović	184
	7.1 Introduction	171
	7.2 Types of prime materials – solid precursors	171

۲

	7.3	Compressive and flexural strength of alkali-activated binders	172
	7.4		187
	7.5	Young's modulus of alkali-activated binders	188
	7.6	Fiber-reinforced alkali-activated binders	198
	7.7	Conclusions and future trends	203
	7.8	Sources of further information and advice	204
		References	204
8	Pre	diction of the compressive strength of alkali-activated	
	geoj	polymeric concrete binders by neuro-fuzzy modeling:	
	a ca	se study	217
		Iazari, F. Pacheco-Torgal, A. Cevik, J. G. Sanjayan	
		Introduction	217
	8.2	Data collection to predict the compressive strength of	
		geopolymer binders by neuro-fuzzy approach	218
	8.3	Fuzzy logic: basic concepts and rules	219
	8.4	• •	
		to predict the compressive strength of geopolymer	
		binders	224
	8.5	Conclusions	230
		References	231
9	Ana	lysing the relation between pore structure and permeability	
	of a	lkali-activated concrete binders	235
		Chang, H. Wang	
	9.1	Introduction	235
	9.2	Alkali-activated metakaolin (AAM) binders	236
	9.3	Alkali-activated fly ash (AAFA) binders	246
	9.4	Alkali-activated slag (AAS) binders	257
	9.5	Conclusions and future trends	26 1
		References	262
10		essing the shrinkage and creep of alkali-activated concrete	
	bin	ders	265
		E. Wallah, D. Hardjito	
	10.1	Introduction	265
	10.2	6 1	265
	10.3	3 Shrinkage in alkali-activated concrete	268
	10.4	•	273
	10.5	• •	280
	10.6	•	282
	10.7		284
	10.8		287
		References	287

J.

,

Par	t Thr	ee Durability of alkali-activated cement-based			
		binders	291		
11	The	frost resistance of alkali-activated cement-based binders	293		
	М. С	yr, R. Pouhet			
	11.1	Introduction	293		
	11.2	Frost in Portland cement concrete	293		
	11.3	Frost in alkali-activated binders – general trends and remarks	298		
	11.4	Detailed review of frost resistance of alkali-activated slag (AAS) systems	301		
	11.5	Detailed review of frost resistance of alkali-activated	301		
	11.5	alumino-silicate systems	306		
	11.6	Detailed review of frost resistance of mixed systems	312		
		Future trends	315		
	11.7		315		
	11.0	References	316		
12	The	resistance of alkali-activated cement-based binders to			
	carbonation				
	carbonation 31 S. A. Bernal				
	12.1	Introduction	319		
	12.2	Testing methods used for determining carbonation resistance	320		
	12.3	Factors controlling carbonation of cementitious materials	322		
		Carbonation of alkali-activated materials	322		
	12.5		022		
		activated materials	329		
		References	330		
13	The	corrosion behaviour of reinforced steel embedded in alkali-			
	activ	ated mortar	333		
	М. С	riado			
	13.1	Introduction	333		
	13.2	Corrosion of reinforced alkali-activated concretes	335		
	13.3	Corrosion resistance in alkali-activated mortars	338		
	13.4	New palliative methods to prevent reinforced concrete			
		corrosion: use of stainless steel reinforcements	350		
	13.5	New palliative methods to prevent reinforced concrete			
		corrosion: use of corrosion inhibitors	361		
	13.6	Future trends	367		
	13.7	Sources of further information and advice	368		
		Acknowledgements	368		
		References	369		

1

14	The I	resistance of alkali-activated cement-based binders to	
	chem	ical attack	373
	Z. Ba	ščarević	
	14.1	Introduction	373
	14.2	Resistance to sodium and magnesium sulphate attack	374
	14.3	Resistance to acid attack	380
	14.4	Decalcification resistance	388
	14.5	Resistance to alkali attack	391
	14.6	Conclusions	392
	14.7	Sources of further information and advice	393
		References	393
15	Resis	stance to alkali-aggregate reaction (AAR) of alkali-	
	activ	ated cement-based binders	39 7
	М. С	yr, R. Pouhet	
	15.1	Introduction	397
	15.2	Alkali-silica reaction (ASR) in Portland cement concrete	398
	15.3	Alkali-aggregate reaction (AAR) in alkali-activated	
		binders – general remarks	401
	15.4	AAR in alkali-activated slag (AAS)	401
	15.5	AAR in alkali-activated fly ash and metakaolin	412
	15.6	Future trends	418
	15.7	Sources of further information	419
		References	419
16	The	fire resistance of alkali-activated cement-based concrete	
	bind	ers	423
		anias, E. Balomenos, K. Sakkas	
		Introduction	423
	16.2	Theoretical analysis of the fire performance of pure alkali-	
		activated systems (Na ₂ O/K ₂ O)-SiO ₂ -Al ₂ O ₃	427
	16.3	Theoretical analysis of the fire performance of calcium	
		containing alkali-activated systems	
		$CaO-(Na_2O/K_2O)-SiO_2-Al_2O_3$	433
	16.4		
		containing alkali-activated systems	
		$FeO-(Na_2O/K_2O)-SiO_2-Al_2O_3$	439
		Fire resistant alkali-activated composites	443
	1 6.6	Fire resistant alkali-activated cements, concretes and	
		binders	447
	16.7		452
	16.8		457
	16.9		458
		References	459
			,

17		ods to control efflorescence in alkali-activated cement-	
		l materials	463
	A. All	ahverdi, E. Najafi Kani, K. M. A. Hossain, M. Lachemi	
	17.1	An introduction to efflorescence	463
	17.2	Efflorescence formation in alkali-activated binders	467
	17.3	Efflorescence formation control in alkali-activated binders	471
	17.4	Conclusions	48 1
		References	481
Par	t Fou	r Applications of alkali-activated cement-based	
		binders	, 485
18		e of aluminosilicate industrial waste materials in the	
	-	action of alkali-activated concrete binders	487
		yá, J. Monzó, M. V. Borrachero, M. M. Tashima	
		Introduction	487
		Bottom ashes	489
	18.3	Slags (other than blast furnace slags (BFS)) and other wastes	
	10.4	from metallurgy	491
		Mining wastes	493
		Glass and ceramic wastes	496
		Construction and demolition wastes (CDW)	501
		Wastes from agro-industry	503
	18.8	1	507
		Future trends	511
	18.10	Sources of further information and advice	511
		Acknowledgement	512
		References	512
19		e of recycled aggregate in the production of i-activated concrete	519
		uindaprasirt, T. Cao	
		Introduction	519
		A brief discussion on recycled aggregates	520
		Properties of alkali-activated recycled aggregate concrete	523
	19.4		528
		Future trends	532
	19.6		532
		References	532
20		f alkali-activated concrete binders for toxic waste	
		obilization	539
		ncellotti, L. Barbieri, C. Leonelli	
	20.1	Introduction and EU environmental regulations	539

Х

	20.2	Definition of waste	540
	20.3	Overview of inertization techniques	540
	20.4	Cold inertization techniques: geopolymers for inertization of	
		heavy metals	541
	20.5	Cold inertization techniques: geopolymers for inertization of	
		anions	544
		Immobilization of complex solid waste	546
		Immobilization of complex liquid waste	550
	20.8		552
		References	552
21		levelopment of alkali-activated mixtures for soil	
		lisation	555
	P. Sa	÷	
		Introduction	555
		Basic mechanisms of chemical soil stabilisation	556
		Chemical stabilisation techniques	562
		Soil suitability for chemical treatment	566
		Traditional binder materials	571
	21.6	Alkali-activated waste products as environmentally	
		sustainable alternatives	572
	21.7	Financial costs of traditional versus alkali-activated waste	
		binders	573
	21.8	Recent research into the engineering performance of alkali-	
		activated binders for soil stabilisation	575
	21.9	Recent research into the mineralogical and microstructural	
		characteristics of alkali-activated binders for soil	50.4
		stabilisation	594
	21.10	Conclusions and future trends	600
		References	601
22	Alka	li-activated cements for protective coating of OPC	
	concrete		
		ang, H. Wang	
	22.1	Introduction	605
	22.2	Basic properties of alkali-activated metakaolin (AAM)	
		coating	606
	22.3	Durability/stability of AAM coating	612
	22.4	On-site trials of AAM coatings	615
	22.5	The potential of developing other alkali-activated materials	
		for OPC concrete coating	622
	22.6	Conclusions and future trends	623
		References	624
			-

xi

ς

23	Perfo	ormance of alkali-activated mortars for the repair and	
	stren	gthening of OPC concrete	627
	F. P a	checo-Torgal, J. Barroso de Aguiar, Y. Ding, W. Tahri,	
	S. Ba	klouti	
	23.1	Introduction	627
	23.2	Concrete patch repair	628
		Strengthening concrete structures using fibre sheets	633
		Conclusions and future trends	638
		References	639
24	-	properties and durability of alkali-activated masonry units	643
		mari, L. Zhang	
		Introduction	643
	24.2	Alkali activation of industrial wastes to produce masonry units	644
	24.3	Physical properties of alkali-activated masonry units	648
	24.4	Mechanical properties of alkali-activated masonry units	651
	24.5	· ·	655
	24.6	Summary and future trends	657
		References	657
		ons of alkali-activated cements and concretes	661
25		cycle assessment (LCA) of alkali-activated cements and	
	conc		663
		uellet-Plamondon, G. Habert	
		Introduction	663
		Literature review	664
	25.3	Development of a unified method to compare alkali-activated	
		binders with cementitious materials	669
	25.4	1	
		methodology	675
	25.5	Future trends in alkali-activated mixtures: considerations on	
		global warming potential (GWP)	678
	25.6	Conclusion	682
	25.7	Sources of further information and advice	683
		References	683
26		li-activated concrete binders as inorganic thermal insulator	(07
	mate		687
		ud'homme, E. Joussein, S. Rossignol	()=
		Introduction	687
	26.2	The various ways to prepare foam-based alkali-activated	

		binders	691
	26.3	Investigation of the foam network	699
	26.4	-	706
	26.5	Thermal properties	718
	26.6	Possible use of a porous geopolymer binder	721
	26.7	Summary	724
		References	725
27	Alkal	li-activated cements for photocatalytic degradation of	
		nic dyes	729
		Zhang, L. Kang, L. C. Liu	
	27.1	Introduction	729
		Experimental technique	730
	27.3	Microstructure and hydration mechanism of	
		alkali-activated granulated blast furnace slag (AGBFS) cements	735
	27.4	Alkali-activated slag-based cementitious material (ASCM)	155
	27.1	coupled with Fe_2O_3 for photocatalytic degradation of	
		Congo red (CR) dye	747
	27.5	Alkali-activated steel slag-based (ASS) cement for	
		photocatalytic degradation of methylene blue (MB) dye	757
	27.6	Alkali-activated fly ash-based (AFA) cement for	
		photocatalytic degradation of MB dye	761
	27.7	Conclusions	768
	27.8	Future trends	768
	27.9	Sources of further information and advice	769
		Acknowledgements	769
		References	769
28	Innov	vative applications of inorganic polymers	
	(geop	oolymers)	777
	K. J.	D. MacKenzie	
	28.1	Introduction	777
	28.2	Techniques for functionalising inorganic polymers	778
	28.3	Inorganic polymers with electronic properties	779
	28.4	Photoactive composites with oxide nanoparticles	782
	28.5	Inorganic polymers with biological functionality	783
	28.6	Inorganic polymers as dye carrying media	787
	28.7	Inorganic polymers as novel chromatography media	788
	28.8	Inorganic polymers as ceramic precursors	790
	28.9	Inorganic polymers with luminescent functionality	792
		Inorganic polymers as novel catalysts	794
		Inorganic polymers as hydrogen storage media	796
		Inorganic polymers containing aligned nanopores	. 798
	28.13	Inorganic polymers reinforced with organic fibres	798

Index	References	802 _{\sigma}
	5 Sources of further information and advice	801
28 14	Future trends	801