Industrial gas turbines

Performance and operability

A. M. Y. Razak

CRC Press Boca Raton Boston New York Washington, DC

WOODHEAD PUBLISHING LIMITED Cambridge England

Contents

	Foreword	xiii
	Preface	xv
	Acknowledgements	xvii
	Note about the CD-ROM accompanying this book	xviii
	CD-ROM: copyright information and terms of use	xix
	Abbreviations and notation	xxi
1	Introduction	1
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Part I	The gas turbine Gas turbine layouts Closed cycle gas turbine Environmental impact Engine controls Performance deterioration Gas turbine simulators References Principles of gas turbine performance	2 3 6 7 9 9 10 10
2	Thermodynamics of gas turbine cycles	13
2.1 2.2 2.3 2.4 2.5 2.6	The first law of thermodynamics The second law of thermodynamics Entropy Steady flow energy equation Pressure–volume and temperature–entropy diagram Ideal simple cycle gas turbine	13 13 14 15 16 16

vi Contents

2.7	Ideal regenerative gas turbine cycle	21
2.8	Reversibility and efficiency	25
2.9	Effect of irreversibility on the performance of the ideal	
	simple cycle gas turbine	31
2.10	Effect of pressure losses on gas turbine performance	32
2.11	Variation of specific heats	32
2.12	Enthalpy and entropy	37
2.13	Combustion charts	39
2.14	Heat exchanger performance	40
2.15	Performance of an actual (practical) simple cycle gas	
	turbine	42
2.16	Performance of an actual (practical) regenerative gas	
	turbine cycle	45
2.17	Turbine entry temperature and stator outlet temperature	50
2.18	Worked examples	51
2.19	References	59
3	Complex gas turbine cycle	60
3.1	Intercooled gas turbine cycles	60
3.2	Reheat gas turbine cycle	72
3.3	Intercooled, reheat and regenerative cycles	85
3.4	Ericsson cycle	89
3.5	Combined cycle gas turbines	94
3.6	Co-generation systems	95
3.7	Hybrid fuel cell-gas turbine system	96
3.8	References	97
4	Compressors	98
4.1	Axial compressors	98
4.2	Compressor blading	99
4.3	Work done factor	102
4.4	Stage load coefficient	103
4.5	Stage pressure ratio	106
4.6	Overall compressor characteristics	109
4.7	Rotating stall	110
4.8	Compressor surge	110
4.9	Compressor annulus geometry	113
4.10	Compressor off-design operation	115
4.11	References	118
5	Axial turbines	120
5.1	Turbine blading	120

•

.

Contents	vii

5.2	Stage load and flow coefficient	122
5.3	Deviation and profile loss	125
5.4	Stage pressure ratio	125
5.5	Overall turbine characteristics	127
5.6	Turbine creep life	129
5.7	Turbine blade cooling	130
5.8	Turbine metal temperature assessment	133
5.9	Effect of cooling technology on thermal efficiency	134
5.10	References	136
6	Gas turbine combustion	137
6.1	Combustion of hydrocarbon fuels	137
6.2	Gas turbine combustion system	140
6.3	Combustor cooling	146
6.4	Types of gas turbine combustor	147
6.5	Fuel injection and atomisation	149
6.6	Combustion stability and heat release rate	152
6.7	Combustion pressure loss and efficiency	154
6.8	Formation of pollutants	156
6.9	NO_x suppression using water and steam injection	157
6.10	Selective catalytic reduction (SCR)	158
6.11	Dry low emission combustion systems (DLE)	158
6.12	Variable geometry combustor	160
6.13	Staged combustion	160
6.14	Rich-burn, quick-quench, lean-burn (RQL) combustor	162
6.15	Lean premixed (LPM) combustion	164
6.16	Catalytic combustion	165
6.17	Impact of engine configuration on DLE combustion	
	systems	166
6.18	Correlations for prediction of NO _x , CO and UHC and the	
	calculation of CO ₂ emissions	168
6.19	References	173
7	Off-design performance prediction	174
7.1	Component matching and component characteristics	174
7.2	Off-design performance prediction of a single-shaft gas turbine	177
7.3	Off-design performance prediction of a two-shaft gas	
	turbine with a free power turbine	181
7.4	Matrix method of solution	185
7.5	Off-design performance prediction of a three-shaft gas	100
	turbine with a free power turbine	187
	T	

viii Contents

7.6	Off-design performance prediction of a two-shaft gas turbine	188
7.7	Off-design performance prediction of a three-shaft gas	100
	turbine	190
7.8	Off-design performance prediction of complex gas turbine cycles	191
7.9	Off-design prediction of a two-shaft gas turbine using a	
	free power turbine and employing intercooling, regeneration and reheat	196
7.10	Off-design prediction of a three-shaft gas turbine using a	170
	power turbine and employing intercooling, regeneration	
	and reheat	198
7.11	Variable geometry compressors	200
7.12	Variable geometry turbines	201
7.13	References	201
8	Behaviour of gas turbines during off-design	
	operation	202
8.1	Steady-state running line	202
8.2	Displacement of running line (single- and two-shaft free	
	power turbine gas turbine)	208
8.3	Three-shaft gas turbine operating with a free power	017
0 /	turbine	217 221
8.4 8.5	Displacement of running line (three-shaft gas turbine) Running line for a two-shaft gas turbine	221
8.6	Running lines of gas turbine complex cycles	225
8.7	Running line, non-dimensional parameters and correcting	220
	data to standard conditions	- 236
8.8	Power turbine curves	237
8.9	Gas power and gas thermal efficiency	239
8.10	Heat rate and specific fuel consumption	240
8.11	References	240
9	Gas turbine performance deterioration	241
9.1	Compressor fouling	242
9.2	Variable inlet guide vane (VIGV) and variable stator	
	vane (VSV) problems	246
9.3	Hot end damage	248
9.4	Tip rubs and seal damage	250
9.5	Quantifying performance deterioration and diagnosing	.
0.6	faults	250
9.6	References	261

••

\sim		
0.0	nte	nts

1	~
	^

10	Principles of engine control systems and transient	
	performance	262
10.1	PID loop	263
10.2	Signal selection	266
10.3	Acceleration-deceleration lines	267
10.4	Control of variable geometry gas turbines	270
10.5	Starting and shutdown	275
10.6	Transient performance	277
10.7	References	288

Part II Simulating the performance of a two-shaft gas turbine

11	Simulating the effects of ambient temperature on engine performance, emissions and turbine life	
	usage	293
11.1	Compressor running line	293
11.2 11.3	Representation of other non-dimensional parameters Effects of ambient temperature on engine performance	294
11.4	(high-power operating case) Effect of reduced power output during a change in	296
11.5	ambient temperature Effect of humidity on gas turbine performance and	313
11.5	emissions	320
12	Simulating the effect of change in ambient pressure on engine performance	323
12.1	Effect of ambient pressure on engine performance (high-power case)	324
12.2	Effect of ambient pressure changes on engine performance at lower power outputs	329
13	Simulating the effects of engine component	
	deterioration on engine performance	337
13.1	Compressor fouling (high operating power)	337
13.2	Compressor fouling (low operating power)	349
13.3	Turbine damage	357
13.4	References	375
14	Power augmentation	376
14.1	Peak rating	377

.

x Contents

14.2	Maximum continuous rating	380
14.3	Power augmentation at very low ambient temperatures	383
14.4	Power augmentation by water injection	388
14.5	Turbine inlet cooling	393
14.6	Power turbine performance	402
14.7	The effect of change in fuel composition on gas	102
	turbine performance and emissions	404
14.8	References	408
15	Simulation of engine control system performance	409
15.1	Proportional action	409
15.2	Proportional and integral action	410
15.3	Signal selection	414
15.4	Acceleration and deceleration lines	417
15.5	Integral wind-up	421
15.6	Engine trips	425
15.7	References	428
Part I	Il Simulating the performance of a single-shaft gas turbine	
10		

10	engine performance, emissions and turbine life usage	431
16.1	Configuration of the single-shaft simulator	431
16.2	Effect of ambient temperature on engine performance at	
	high power	432
16.3	Effect of ambient temperature on engine performance at	
	low power	444
16.4	Effect of ambient temperature on engine performance at	
	high power (single-shaft gas turbine operating with an	
	active variable inlet guide vane)	454
16.5	Effect of humidity on gas turbine performance and	
	emissions	463
17	Simulating the offect of change is explicit expression	
17	Simulating the effect of change in ambient pressure	400
	on engine performance	466
17.1	Effect of ambient pressure on engine performance at high	
	power	467
17.2	Effect of ambient pressure on engine performance at low	
	power	472

	<u>،</u>
Contents	xi

17.3	Effect of ambient pressure on engine performance at low power (single-shaft gas turbine operating with an active variable inlet guide vane)	479
18	Simulating the effects of engine component deterioration on engine performance	489
18.1 18.2 18.3	Compressor fouling (high-power operation) Compressor fouling (low-power operation) Compressor fouling at low-power operation (single-shaft gas turbine operating with an active variable inlet guide	489 497
18.4 18.5	vane) Turbine damage (hot end damage) at high-power outputs Hot end damage at low power with active VIGV	504 508
10	operation	515
19	Power augmentation	524
19.1	Peak rating	525
19.2	Power augmentation by increasing VIGV angle	528
19.3	Power augmentation using water injection	533
19.4 19.5	Power augmentation at low ambient temperatures Turbine inlet cooling	537 543
20	Simulation of engine control system performance	545
20.1 20.2	VIGV control system simulation VIGV control when the VIGV is active during the normal	545
20.3	operating power range Optimisation of the EGT limit for a single-shaft gas turbine with ambient temperature	549 563
21	Simulation exercises	566
21.1	Exercises using the single-shaft gas turbine simulator Effects of ambient temperature and pressure on engine	
	performance	566
21.2	Effects of component performance deterioration	568
21.3	Power augmentation	568
21.4 21.5	Combined cycle and co-generation Engine control systems	570 571
21.5	Gas turbine emissions	571
21.7	<i>Exercises using the two-shaft gas turbine simulator</i> Effects of ambient temperature, pressure and humidity on	
	engine performance	573

xii Contents

21.8	Effects of component performance deterioration	575
21.9	Power augmentation	576
21.10	Combined cycle and co-generation	578
21.11	Engine control systems	579
21.12	Gas turbine emissions	579
21.13	Answers to exercises	582
Append	dix: Steady flow energy equation and stagnation properties	589
A1.1	Steady flow energy equation	589
A1.2	Stagnation temperatures and pressures	590
A1.3	References	591
	Index	593