HIGHWAY TRAFFIC ANALYSIS AND DESIGN

R. J. Salter

Senior Lecturer in Civil Engineering University of Bradford

REVISED EDITION

M

U

G,

Technische Hochschule Darmstadt Fachbereich Mechanik Bibliothek Inv.-Nr. BM 139/79

Contents

Preface	
*	

PART 1 TRAFFIC ANALYSIS AND PREDICTION

1.	Introduction to the transportation planning process		3
2.	The transportation study area		8
3.	The collection of existing travel data		14
4.	The external cordon and screenline surveys		18
5.	Other surveys		22
6.	Trip generation	¢	25
7.	Trip distribution		35
8.	Modal split		53
9.	Traffic assignment		64
10.	The evaluation of transportation proposals		71

PART 2 ANALYSIS AND DESIGN FOR HIGHWAY TRAFFIC

11.	The capacity of highways between intersections	95
12.	Headway distributions in highway traffic flow	107
13.	The relationship between speed, flow and density of a highway traffic	
	stream	125
14:	The distribution of vehicular speeds in a highway traffic stream	135
15.	The macroscopic determination of speed and flow of a highway traffic	
	stream	145
16.	Intersections with priority control	150
17.	Driver reactions at priority intersections	156
18.	Delays at priority intersections	163
19.	A simulation approach to delay at priority intersections	171
20.	Weaving action at intersections	182
21.	Lengths of weaving sections calculated in accordance with the Highway	
	Capacity Manual	189
22.	Queueing processes in traffic flow	201
23.	New forms of single level intersections	211
24.	Grade-separated junctions	219
25.	The environmental effects of highway traffic noise	229
26.	The environmental effects of highway traffic pollution	245
27.	Traffic congestion and restraint	250

CONTENTS -

0

PART 3 TRAFFIC SIGNAL CONTROL

28.	Introduction to traffic signals	269
29.	Warrants for the use of traffic signals	271
30.	Phasing	275
31.	Signal aspects and the intergreen period	278
32.	Vehicle-actuated signal facilities	280
33.	The effect of roadway and environmental factors on the capacity of a	
	traffic-signal approach	282
34.	The effect of traffic factors on the capacity of a traffic-signal approach	287
35.	Determination of the effective green time	291
36.	Optimum cycle times for an intersection	294
37.	The timing diagram	299
38.	Early cut-off and late-start facilities	302
39.	The effect of right-turning vehicles combined with straight-ahead and	
	left-turning vehicles	306
40.	The ultimate capacity of the whole intersection	311
41.	The optimisation of signal-approach dimensions	; 314
42.	Optimum signal settings when saturation flow falls during the green	
	period	319
43.	Delay at signal-controlled intersections	324
44.	Determination of the optimum cycle from a consideration of delays on	
	the approach	329
45.	Average queue lengths at the commencement of the green period	336
46.	The co-ordination of traffic signals	342
47.	Time and distance diagrams for linked traffic signals	344
48.	Platoon dispersion and the linking of traffic signals	349
49.	The prediction of the dispersion of traffic platoons downstream of signals	-352
50.	The delay offset relationship and the linking of signals	354
51.	Some area traffic control systems	363
App	pendix	370
Ind	lex	373

vi